期刊文献+

面向增强现实的在线视频阴影跟踪检测算法

Online Shadow Tracking and Detection Framework for Augmented Reality
下载PDF
导出
摘要 在增强现实领域,光影一致性的保持十分重要,之前的研究者们主要集中在光照估计然后模拟生成阴影。大多需要知道物体的投射物体的具体形状,很少考虑真实场景阴影和虚拟物体之间的光影相互影响。提出一种原创的面向增强现实的阴影检测算法。首先利用Meanshift算法进行图像预分割,检测阴影边缘。然后有效结合2D和3D信息,基于局部一致性进行误检测去除,最后得到理想的阴影边缘,从而可以逆向生成阴影区域,更好地模拟阴影交互。实验结果证明算法的有效性。 In Augmented Reality (All), keeping the illumination consistency is very important. Most previous AR techniques about shadow process- ing mainly focus on illumination estimation and then generate the shadow of the virtual objects. Mostly, the shadow interaction between the virtual objects and the real scene has been ignored. Proposes a novel shadow detection algorithm for AR. Firstly, every frame will be segmented with mean-shift method, and then the shadow edges will be detected. The method based on local consistency refines the shad- ow edges combining the 2D information and 3D information effectively. Then, the virtual shadow can be generated from the shadow edges reverse. Experiments demonstrate the stability and effectiveness of our method.
作者 孔维斌
出处 《现代计算机(中旬刊)》 2016年第1期62-67,共6页 Modern Computer
关键词 增强现实 阴影检测 MEANSHIFT 阴影交互 Augmented Reality Shadow Detection Meanshift Shadow Interaction
  • 相关文献

参考文献15

  • 1G. Xing, X. Zhou, Y. Liu, X. Qin, Q. Peng, Online Illumination Estimation of Outdoor Scenes Based on Videos Containing no Shadow Area, Science China Information Sciences,56(3) (2013)I-11. doi:10.1007/s11432-012-4780-7.
  • 2Q. Zhao. A Survey on Virtual Reality, Science in China Series F: Information Sciences,52(3) (2009) 348-400.
  • 3K. Jacobs, C. Loscos, Classification of Illumination Methods tbr Mixed Reality, in: Computer Graphics Forum. Vol. 25, Wiley Online Library, 2006, pp. 29 51.
  • 4G. Xing, X. Zhou, Q. Peng, Y. Liu, X. Qin, Lighting Simulation of Augmented Outdoor Scene Based on a Legacy Photograph, in: Com- puter Graphics Forum, Vol. 32, Wiley Online Library, 2013, pp. 101-110.
  • 5J. Dai, D. Han, Region-Based Moving Shadow Detection Using Affinity Propagation.
  • 6E. Bullkich, I. Ilan, Y. Moshe, Y. Hel-Or, H. Hel-Or, Moving Shadow Detection by Nonlinear Tone-Mapping, in: Systems, Signals and Image Processing (IWSSIP), 2012 19th International Conference on, IEEE, 2012, pp. 146-149.
  • 7S. Nadimi, B. Bhanu, Physical Models for Moving Shadow and Object Detection in Video, Pattern Analysis and Machine Intelligence, IEEE Transactions on,26 (8) (2004) 1079-1087.
  • 8B. V. Lu, T. Kakuta, R. Kawakami, T. Oishi, K. |keuchi, Foreground and Shadow Occlusion Handling for Outdoor Augmented Reality, in: Mixed and Augmented Reality (ISMAR), 2010 9th IEEE International Symposium on, IEEE, 2010, pp. 109-118.
  • 9C. B. Madsen, B. B. Lal, Estimating Outdoor Illumination Conditions Based on Detection of Dynamic Shadows, in: Computer Vision, Imaging and Computer Graphics. Theory and Applications, Springer, 2013, pp. 33-52.
  • 10R. Raguram, J,-M. Frahm, M. Pollefeys, A Comparative Analysis of Ransac Techniques Leading to Adaptive Real-Time Random Sample Consensus, in: Computer Vision-ECCV 2008, Springer, 2008, pp. 500-513.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部