期刊文献+

一种个性化协同过滤混合推荐算法 被引量:2

A Kind of Personalized Collaborative Filtering Hybrid Recommendation Algorithm
下载PDF
导出
摘要 传统协同过滤算法主要根据稀疏的评分矩阵向用户作出推荐,存在推荐质量较差的问题。为此,提出一种基于信息熵的综合项目相似度度量方法。考虑到用户的兴趣会随时间发生变化,而且不同用户群体的兴趣变化不同,受艾宾浩斯记忆遗忘规律启发,提出适应于不同用户群体兴趣变化的数据权重。基于movielens数据集的实验结果表明,改进后算法不仅能缓解评分数据稀疏问题,而且能提高算法的准确率。 Traditional collaborative filtering algorithm exists poor recommendation quality for recommending to the user based solely on sparse rating matrix. A new comprehensive item similarity measurement algorithm based on information entropy is proposed in this paper to dispose the data sparse problem. Meanwhile, taking into account the user's interest will change over time, and the change is not same in different user groups, this paper put forward the weight of adapt to different user interest changes, which is inspired by Ebbinghaus's memory rule. The performed experiment based on the dataset of movielens shows that the modified algorithm can not only alleviate the problem of rating data sparse, but also can improve the accuracy of the algorithm.
出处 《软件导刊》 2016年第3期52-56,共5页 Software Guide
基金 北京市重点学科基金项目(007000541215042)
关键词 推荐系统 协同过滤 项目属性 信息熵 Recommend System Collaborative Filtering Item Attribute Interest Change Information Entropy
  • 相关文献

参考文献15

  • 1SARWAR B, KARYPIS G, KONSTAN J, et al. Item based col- laborative filtering recommendation algorithms[C]. 2001285 295.
  • 2任磊.一种结合评分时间特性的协同推荐算法[J].计算机应用与软件,2015,32(5):112-115. 被引量:8
  • 3BILI.INGS S A, LEE K L. Nonlinear fisher discriminant analysis using a minimum squared error cost function and the borthogonal least squares algorithm[J]. Neural Networks 2002, 15(2): 263- 270.
  • 4MA H,KING I, I.YU M R. Effective missing data pred[cition col- laborative filtering[C]. New York: ACM Press,2007 : 39 46.
  • 5XU JIANHUA, ZHANG XUEGONG, l.I YANDA. Kernel MSE algorithm: a Unified framework for KFD, LS-SVM and KRR[C]. WashingtonD. C: IEEEPress, 2001:1486-1491.
  • 6SARWAR B,KARYPIS G, KONSTAN J, et al. Application of di- mensionality reduction in recommender system-a case study[R]. 2000.
  • 7GOLDERG K,RODER T,GUPTA D, et al. A constant time col- laborative filtering algorithm[J]. Information Retrival, 2001,4 ( 2 ) : 133-151.
  • 8邢春晓,高凤荣,战思南,周立柱.适应用户兴趣变化的协同过滤推荐算法[J].计算机研究与发展,2007,44(2):296-301. 被引量:148
  • 9李克潮,梁正友.适应用户兴趣变化的指数遗忘协同过滤算法[J].计算机工程与应用,2011,47(13):154-156. 被引量:20
  • 10于洪,李转运.基于遗忘曲线的协同过滤推荐算法[J].南京大学学报(自然科学版),2010,46(5):520-527. 被引量:74

二级参考文献101

共引文献790

同被引文献9

引证文献2

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部