期刊文献+

离子交换膜厚度对钒电池性能的影响 被引量:4

Effect of membrane thickness on performance of all-vanadium redox flow batteries
原文传递
导出
摘要 电解液穿过离子交换膜的传质现象会导致全钒液流电池性能和寿命降低.作为重要设计参数,膜厚度是影响膜内离子传输的主要因素.本文使用结合了Donnan效应的钒电池一维传质模型,通过数值模拟方法考察离子交换膜厚度对膜内传质控制作用的影响,并得到电池性能的变化规律.结果显示:电池库伦效率随膜厚度变化呈三个阶段.膜厚度较小时,库伦效率恶化严重;膜厚度适中时,库伦效率随膜厚度增加而明显提升;膜厚度较大时,库伦效率随膜厚度增加趋缓.研究发现,随电池运行膜两侧溶液电势差逐渐达到稳定状态,这一过程受初始膜两侧氢离子浓度差和膜厚度控制.此外,膜厚度越小,膜内钒离子流量越大,其作用机制转为扩散主导;随充放电进行,迁移作用受膜两侧浓差平衡电势差影响. Species crossover through the ion exchange membrane leads to a decrease in the cell performance and lifetime for all-vanadium redox flow batteries(VRFBs). As an important design parameter, membrane thickness is one of the major factors for ion transport through the membrane. In this paper, a transient electrochemical model incorporating the Donnan effect for VRFBs is utilized to study the effect of membrane thickness on the ion transport in the membrane and on the cell performance. The simulated results show that with an increase in the membrane thickness, the coulombic efficiency is promoted while the extent gradually slows down. When the thickness is small, the coulombic efficiency deteriorates seriously. The study found that the ionic potential through the membrane gradually reaches a steady state, which process is controlled by the H+ concentration difference across the membrane and the membrane thickness. Moreover, with a decrease in the thickness, the vanadium ion fluxes are enhanced and the diffusion terns into the domination; while the migration is always controlled by the concentration overpotential.
出处 《中国科学:技术科学》 EI CSCD 北大核心 2016年第2期166-174,共9页 Scientia Sinica(Technologica)
基金 动力工程多相流国家重点实验室开放研究基金资助项目
关键词 全钒液流电池 Donnan效应 膜内离子传输 膜厚度 一维模型 all-vanadium redox flow batteries Donnan effect ion transport in the membrane membrane thickness one dimensional model
  • 相关文献

参考文献17

  • 1Soloveichik G L. Battery technologies for large-scale stationary energy storage. Ann Rev Chem Biomol Eng, 2011, 2:503-27.
  • 2Yang Z, Zhang J, Kintner-Meyer MC, et al. Electrochemical energy storage for green grid. Chem Rev, 2011, 111:3577-3613.
  • 3Huang K L, Li X G, Liu S Q, et al. Research progress of vanadium redox flow battery for energy storage in China. Renewable Energy, 2008, 33:186-192.
  • 4Yang X G, Ye Q, Cheng P, et al. Effects of the electric field on ion crossover in vanadium redox flow batteries. Appl Energy, 2015, 145: 306-319.
  • 5Lawton J S, Jones A, Zawodzinski T. Concentration dependence of VO2 crossover of Nafion for vanadium redox flow batteries. J Electrochem Soc, 2013, 160:697-702.
  • 6Luo Q T, Zhang H M, Chen J, et al. Preparation and characterization of Nafion/SPEEK layered composite membrane and its application in vanadium redox flow battery. J Membr Sci, 2008, 325:553-558.
  • 7Xi J Y, Wu Z H, Qiu X P, et al. Nafion/SiO2 hybrid membrane for vanadium redox flow battery. J Power Sources, 2007, 166:531-536.
  • 8Ling X, Jia C K, Liu J G, et al. Preparation and characterization of sulfonated poly(ether sulfone)/sulfonated poly(ether ether ketone) blend membrane for vanadium redox flow battery. J Membr Sci, 2012, 415:306-312.
  • 9Xing D B, Zhang S H, Yin C X, et al. Preparation and characterization of chloromethylated/quatemized poly(phthalazinone ether sulfone) anion exchange membrane. Mater Sci Eng B, 2009, 157:1-5.
  • 10Oh K, Won S, Ju H. A comparative study of species migration and diffusion mechanisms in all-vanadium redox flow batteries. Electrochim Acta, 2015, in press Knehr K W, Kumbur E C. Role of convection and related effects on species crossover and capacity loss in vanadium redox flow batteries. Electrochem Commun, 2012, 23:76-79.

同被引文献21

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部