摘要
Using a multi-phase transport model(AMPT) that includes both initial partonic and hadronic interactions, we study neighboring bin multiplicity correlations as a function of pseudorapidity in Au+Au collisions at √sNN= 7.7- 62.4 GeV.It is observed that for √sNN〈19.6 GeV Au+Au collisions, the short-range correlations of final particles have a trough at central pseudorapidity, while for √sNN 〉19.6 GeV AuAu collisions,the short-range correlations of final particles have a peak at central pseudorapidity. Our findings indicate that the pseudorapidity dependence of short-range correlations should contain some new physical information, and are not a simple result of the pseudorapidity distribution of final particles. The AMPT results with and without hadronic scattering are compared. It is found that hadron scattering can only increase the short-range correlations to some level, but is not responsible for the different correlation shapes for different energies. Further study shows that the different pseudorapidity dependence of short-range correlations are mainly due to partonic evolution and the following hadronization scheme.
Using a multi-phase transport model(AMPT) that includes both initial partonic and hadronic interactions, we study neighboring bin multiplicity correlations as a function of pseudorapidity in Au+Au collisions at √sNN= 7.7- 62.4 GeV.It is observed that for √sNN〈19.6 GeV Au+Au collisions, the short-range correlations of final particles have a trough at central pseudorapidity, while for √sNN 〉19.6 GeV AuAu collisions,the short-range correlations of final particles have a peak at central pseudorapidity. Our findings indicate that the pseudorapidity dependence of short-range correlations should contain some new physical information, and are not a simple result of the pseudorapidity distribution of final particles. The AMPT results with and without hadronic scattering are compared. It is found that hadron scattering can only increase the short-range correlations to some level, but is not responsible for the different correlation shapes for different energies. Further study shows that the different pseudorapidity dependence of short-range correlations are mainly due to partonic evolution and the following hadronization scheme.
基金
Supported by GBL31512
Major State Basic Research Devolopment Program of China(2014CB845402)
NSFC(11475149,11175232,11375251,11421505,11221504)