期刊文献+

基于Hadoop的公共建筑能耗数据挖掘方法 被引量:10

Data Mining Method for Public Buildings Energy Consumption Based on Hadoop
下载PDF
导出
摘要 针对建筑能耗数据无法有效利用这一问题,提出利用Hadoop分布式架构,结合建筑基本信息对公共建筑能耗数据进行数据挖掘的方法.对基于Hadoop的公共建筑能耗数据挖掘系统进行了初步设计,并对系统的基本架构和各模块的功能进行了设计和说明.同时,对Apriori算法和C4.5算法实现Map Reduce分布式设计.以山东省100栋办公建筑制冷期的空调系统耗电量为例进行实验分析,得到6类建筑信息属性对空调系统能耗的影响规律,并生成空调系统耗电量判定树,可判别建筑空调系统耗电量等级,并对样本建筑的节能改造提供具有针对性的建议. The utilization of building energy consumption data is still inefficient. According to this problem, in this paper, a new method based on Hadoop for data mining of public buildings energy consumption combining with building information is proposed. The paper designs the data mining system of public building energy consumption based on Hadoop, and performs designs and illustrations to the basic framework and functional modules. Apriori algorithm and C4.5 algorithm are implemented distributively using Map Reduce programming model. The paper takes 100 office buildings in Shandong Province as examples to analyse the data of air conditioning system energy consumption. The experimental conclusions are the influence rules of 6 kinds of building information on air conditioning system energy consumption. Moreover, the experiment obtains the decision tree of air conditioning system energy consumption. According to the decision tree, we can distinguish the energy consumption level of air conditioning system, and offer targeted advice on energy saving renovation of sample buildings.
出处 《计算机系统应用》 2016年第3期34-42,共9页 Computer Systems & Applications
基金 山东省住房和城乡建设厅项目(2013-HT-01)
关键词 建筑能耗 HADOOP APRIORI算法 C4.5算法 Map REDUCE buildings energy consumption Hadoop Apriori algorithm C4.5 algorithm Map Reduce
  • 相关文献

参考文献13

  • 1Bryant RE, Katz RH, Lazowska ED. Big data computing: Creating revolutionary breakthroughs in commerce, science, and society, http://www.cra.org/ccc/docs/init/Big_Data.pdf. [2012-10-02].
  • 2White T. Hadoop: The Definitive Guide.3rd ed., USA: O'Reilly Media, Inc, 2012: 3-6.
  • 3陆嘉恒.Hadoop实战.北京:机械工业出版社,2012.互动百科.数据挖掘.http://www.baike.com/wiki/%E6%95%B0%E6%8D%AE%E6%8C%96%E6%8E%98.[2015-5-22].
  • 4HanJW,KamberM.数据挖掘:概念与技术.第3版.范明,孟小峰译.北京:机械工业出版社.2012.
  • 5山东省建设发展研究院.山东建筑大学.公共建筑节能监测系统技术规范.DBJ/T14.071.2010.
  • 6HandD,MannilaH,SmythP数据挖掘原理,张银奎,廖丽,宋俊,等译.北京:机械工业出版社,2004.
  • 7Mohammed AM, Bassam A. An Improved Apriori Algorithm for Association Rules. e-print arXiv: 1403.3948, 2014.
  • 8李玲娟,张敏.云计算环境下关联规则挖掘算法的研究[J].计算机技术与发展,2011,21(2):43-46. 被引量:48
  • 9Taherkhani A. Recognizing sorting algorithms with the C4.5 decision tree classifier. ICPC, International Conference on Program Comprehension. 2010. 72-75.
  • 10深圳市建筑科学研究院股份有限公司.中国建筑科学研究院.公共建筑能耗远程监测系统技术规程.JGJ/T285-2014.

二级参考文献13

  • 1涂逢祥,王庆一.我国建筑节能现状及发展[J].新型建筑材料,2004,31(7):40-42. 被引量:88
  • 2薛志峰,江亿.北京市大型公共建筑用能现状与节能潜力分析[J].暖通空调,2004,34(9):8-10. 被引量:183
  • 3刘华元,袁琴琴,王保保.并行数据挖掘算法综述[J].电子科技,2006,19(1):65-68. 被引量:15
  • 4国家技术前瞻研究组.中国技术前瞻报告2004--能源、资源环境和先进制造[R].北京:科学技术文献出版社,2005.
  • 5Weiss A. Computing in Clouds[ J]. ACM Networker,2007,11 (4) : 18-25.
  • 6Buyya R, Yeo C S, Venugopal S. Market-Oriented Cloud Computing : Vision, Hype, and Reality for Delivering IT Services as Computing Utilities[ C ]//Proceedings of the 2008 10^th IEEE International Conference on High Performance Computing and Communications. [ s. l. ] : [ s. n. ] ,2008 : 5-13.
  • 7Apache. Hadoop [ EB/OL]. 2006. http://lucene, apache. org/hadoop/.
  • 8Dean J, Ghemawat S. Mapreduce: Simplified data processing on large clusters [ C ]//Proceedings of the 6th Symposium on Operating System Design and Implementation. San Francisco, California, USA : USENIX Association, 2004 : 137-150.
  • 9Wu X, Kumar V, Ghosh R J, et al. Top 10 algorithms in data mining[J]. Knowledge and Information Systems,2008,14 (1) :1-37.
  • 10Agrawal R, Sharer J C. Parallel Mining of Association Rules [ J]. IEEE Transactions on Knowledge and Data Engineering, 1996,8 ( 6 ) : 962- 969.

共引文献83

同被引文献115

引证文献10

二级引证文献83

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部