期刊文献+

多光谱遥感影像亮度空间相位一致性特征点检测 被引量:8

Interest Point Detection for Multispectral Remote Sensing Image Using Phase Congruency in Illumination Space
下载PDF
导出
摘要 提出了一种基于亮度空间和相位一致性理论的多光谱遥感影像特征点检测算法。首先利用参数自适应的灰度变换函数建立影像亮度空间;然后结合相位一致性方法在影像亮度空间进行候选特征点检测,并将候选特征点映射到原始影像上进行非极大值抑制;最后在尺度空间计算特征点的特征尺度值。本文方法有效结合了亮度空间特征检测和相位一致性特征检测的优势,对多光谱遥感影像的辐射变化具有较强的稳健性。试验结果证明,与传统特征点检测算法相比,本文方法在特征重复率和重复特征数量方面都具有明显的优势。 A robust interest point detection algorithm based on illumination space and phase congruency is proposed in this paper.Firstly,image illumination space is constructed by using aparameters adaptive method.Secondly,aphase congruency based interest point detection algorithm is adopted to compute candidate points in illumination space.Then,all interest point candidates are mapped back to the original image and a non-maximum suppression step is added to find final interest points.Finally,the feature scale values of all interest points are calculated based on the Laplacian function.The proposed algorithm combines the advantages of illumination space and phase congruency,which makes the proposed method robust to the radiation variation of multispectral images.The experimental results show that the proposed method performs better than other traditional methods in feature repeatability rate and repeated features number.
出处 《测绘学报》 EI CSCD 北大核心 2016年第2期178-185,共8页 Acta Geodaetica et Cartographica Sinica
基金 国家自然科学基金(41471320 41501492) 四川省科技支撑计划(2014SZ0106 2015SZ0046) 四川省应急测绘与防灾减灾工程技术研究中心开放基金(K2015B006) 测绘遥感信息工程国家重点实验室开放基金((14)Key03) 长江学者和创新团队发展计划(IRT13092)~~
关键词 相位一致性 亮度空间 多光谱遥感影像 特征点检测 phase congruency illumination space multispectral remote sensing image interest point detection
  • 相关文献

参考文献21

  • 1HARRIS C,STEPHENS M.A Combined Corner and Edge Detector[C]//Proceedings of the 4th Alvey Vision Conference.Plessey Research Roke Manor:The Plessey Company,1988:147-152.
  • 2REISFELD D,WOLFSON H,YESHURUN Y.Context-free Attentional Operators:The Generalized Symmetry Transform[J].International Journal of Computer Vision,1995,14(2):119-130.
  • 3王青松,赵西安,吕京国,王守营,马超.基于高斯差分的改进Harris特征点提取算法[J].测绘科学,2014,39(4):119-122. 被引量:3
  • 4SMITH S,BRADT J M.SUSAN:A New Approach to Low Level Image Processing[J].International Journal of Computer Vision,1997,23(1):45-78.
  • 5王巍,赵红蕊.面向影像匹配的SUSAN角点检测[J].遥感学报,2011,15(5):940-956. 被引量:15
  • 6陈敏,邵振峰.一种稳健的高效角点特征提取变换[J].武汉大学学报(信息科学版),2013,38(10):1142-1147. 被引量:2
  • 7LOWE D G.Distinctive Image Features from Scale-invariant Keypoints[J].International Journal of Computer Vision,2004,60(2):91-110.
  • 8BAY H,ESS A,TUYTELAARS T,et al.Speeded-up Robust Features (SURF)[J].Computer Vision and Image Understanding,2008,110(3):346-359.
  • 9ALAHI A,ORTIZ R,VANDERGHEYNST P.FREAK:Fast Retina Keypoint[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Providence,RI:IEEE,2012:510-517.
  • 10HASAN M,JIA Xiuping,ROBLES-KELLY A,et al.Multi-spectral Remote Sensing Image Registration via Spatial Relationship Analysis on SIFT Keypoints[C]//Proceedings of IEEE International Geoscience and Remote Sensing Symposium.Honolulu,HI:IEEE,2010:1011-1014.

二级参考文献89

共引文献117

同被引文献94

  • 1吴一全,刘莉.基于视觉的车道线检测方法研究进展[J].仪器仪表学报,2019,40(12):92-109. 被引量:32
  • 2孔祥龙,李玉同,远晓辉,于全芝,郑志远,梁文锡,王兆华,魏志义,张杰.Lucy-Richardson算法用于针孔图像的恢复[J].物理学报,2006,55(5):2364-2370. 被引量:20
  • 3刘永学,李满春,毛亮.基于边缘的多光谱遥感图像分割方法[J].遥感学报,2006,10(3):350-356. 被引量:37
  • 4肖鹏峰,冯学智,赵书河,佘江峰.基于相位一致的高分辨率遥感图像分割方法[J].测绘学报,2007,36(2):146-151. 被引量:55
  • 5LOWE D G. Distinctive Image Features from Scale-invariant Keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
  • 6SCHWIND P, SURI S, REINARTZ P,et al. Applicability of the SIFT Operator to Geometric SAR Image Registration[J].International Journal of Remote Sensing, 2010, 31(8): 1959-1980.
  • 7SURI S, SCHWlND P, UHL J,et al. Modifications in the SIFT Operator for Effective SAR Image Matching[J].International Journal of Image and Data Fusion, 2010, 1 (3) : 243-256.
  • 8FAN Bin, WU Fuchao, Hu Zhanyi. Aggregating Gradient Distributions into Intensity Orders: A Novel Local Image Descriptor [C] // Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Providence: IEEE,2011: 2377-2384.
  • 9FAN Bin, HUO Chunlei, PAN Chunhong, et al.Registration of Optical and SAR Satellite Images by Exploring the Spatial Relationship of the Improved SIFT[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(4): 657-661.
  • 10LIU Lining, WANG Yunhong, WANG Yiding.SIFT Based Automatic Tie-point Extraction for Multitemporal SAR Images [C] // International Workshop on Education Technology and Training and International Workshop on Geoscience and Remote Sensing. Shanghai: IEEE, 2008: 499-503.

引证文献8

二级引证文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部