期刊文献+

k-拟-A类算子是次标量算子

k-quasi-class A operators are subscalar operators
原文传递
导出
摘要 本文证明了A类算子和与其可交换的k阶代数算子的和是12k+2阶次标量算子,并证明了每个k-拟-A类算子有一个标量扩张.作为推论,得到若此类算子的谱集有非空内点,则其有非平凡的不变子空间.最后研究了k-拟-A类算子的超不变子空间问题. In this paper, we show that the sum of a class A operator and an algebraic operator of order k which are commuting is subscalar of order 12k+2, we also prove that every k-quasi-class A operator has a scalar extension. As a consequence, we get that if the spectrum of such an operator has nonempty interior in C, then it has a nontrivial invariant subspace. We also examine the hyperinvariant subspace problem for k-quasi-class A operator.
出处 《中国科学:数学》 CSCD 北大核心 2016年第2期129-140,共12页 Scientia Sinica:Mathematica
基金 国家自然科学基金(批准号:11201126和11226185)资助项目
关键词 A类算子 (β)性质 不变子空间 次标量算子 class A, property (), invariant subspace, subscalar operator
  • 相关文献

参考文献28

  • 1Aluthge A. On p-hyponormal operators for 0 ~ p < 1. Integral Equations Operator Theory, 1990, 13:307-315.
  • 2Aluthge A, Wang D. w-hyponormal operators. Integral Equations Operator Theory, 2000, 36:1-10.
  • 3Furuta T, It6 M, Yamazaki T. A subclass of paranormal operators including class of log-hyponormal and several related classes. Sci Math, 1998, 1:389-403.
  • 4Jeon I H, Kim I H. On operators satisfying T* IT2 IT >~ T* ITI2T. Linear Algebra Appl, 2006, 418:854-862.
  • 5Tanahashi K, Jeon I H, Kim I H, et al. Quasinilpotent part of class A or (p, k)-quasihyponormal operators. Oper Theory Adv Appl, 2008, 187:199-210.
  • 6Gao F, Fang X. On k-quasi-class A operators. J Inequal Appl, 2009, 2009:921634.
  • 7Kim I H. Weyl's theorem and tensor product for operators satisfying T*k[T2[Tk >~ T*klT[2Tk. J Korean Math Soc, 2010, 47:351 361.
  • 8Furuta T. Invitation to Linear Operatorss. London: Taylor and Francis, 2001.
  • 9Dunford N. A survey of the theory of spectral operators. Bull Amer Math Soc, 1958, 64:217-274.
  • 10Dowsow H R. Spectral Theory of Linear Operators. London: Academic Press, 1978.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部