摘要
本文研究一类具有多项式型边界记忆项的非线性热方程的解的长时间行为,首先建立比较原理并证明经典解的局部存在性;接下来利用比较原理和Green函数研究解的整体存在和爆破;最后讨论边界爆破并给出爆破速率估计.
This paper deals with the long time behavior of solutions of the heat equation with a memory boundary of polynomial type. We first establish the comparison principle and prove the local existence of classical solutions. Then we study the global existence and blowup of the solutions by using the comparison principle and Green's function. At last, we consider the boundary blowup and the blowup rate.
出处
《中国科学:数学》
CSCD
北大核心
2016年第2期197-210,共14页
Scientia Sinica:Mathematica
基金
国家自然科学基金(批准号:11071266和11201380)
中国博士后基金(批准号:2014M550453)
重庆市第二批青年骨干教师资助计划资助项目
关键词
多项式型边界记忆项
爆破
整体存在
边界爆破
爆破速率
memory boundary of polynomial type, blowup, global existence, boundary blowup, blowuprate