期刊文献+

一类具有多项式型边界记忆项的非线性热方程解的整体存在与爆破

Global existence and blowup of solutions of the heat equation with a memory boundary of polynomial type
原文传递
导出
摘要 本文研究一类具有多项式型边界记忆项的非线性热方程的解的长时间行为,首先建立比较原理并证明经典解的局部存在性;接下来利用比较原理和Green函数研究解的整体存在和爆破;最后讨论边界爆破并给出爆破速率估计. This paper deals with the long time behavior of solutions of the heat equation with a memory boundary of polynomial type. We first establish the comparison principle and prove the local existence of classical solutions. Then we study the global existence and blowup of the solutions by using the comparison principle and Green's function. At last, we consider the boundary blowup and the blowup rate.
作者 周军
出处 《中国科学:数学》 CSCD 北大核心 2016年第2期197-210,共14页 Scientia Sinica:Mathematica
基金 国家自然科学基金(批准号:11071266和11201380) 中国博士后基金(批准号:2014M550453) 重庆市第二批青年骨干教师资助计划资助项目
关键词 多项式型边界记忆项 爆破 整体存在 边界爆破 爆破速率 memory boundary of polynomial type, blowup, global existence, boundary blowup, blowuprate
  • 相关文献

参考文献26

  • 1Kastenberg W E. Space dependent reactor kinetics with positive feedback. Technical Report. Los Angeles: University of California, 1968.
  • 2Li X Y, Xie C H. Blow-up for semilinear parabolic equations with nonlinear memory. Z Angew Math Phys, 2004, 55: 15-27.
  • 3Pa~ C V. Solution of a nonlinear integrodifferential system arising in nuclear reactor dynamics. J Math Anal Appl, 1974, 48:470 492.
  • 4Belmiloudi A. Nonlinear optimal control problems of degenerate parabolic equations with logistic time-varying delays of convolution type. Nonlinear Anal, 2005, 63:1126-1152.
  • 5Belmiloudi A. Dynamical behavior of nonlinear impulsive abstract partial differential equations on networks with multiple time-varying delays and mixed boundary conditions involving time-varying delays. J Dyn Control Syst, 2015, 21:95 146.
  • 6Kozhanov A I. Parabolic equations with nonlocal nonlinear source. Sib Math J, 1994, 35:945-956.
  • 7Yamada Y. On a certain class of semilinear volterra diffusion equations. J Math Anal Appl, 1982, 88:433-451.
  • 8Conti M, Gatti S, Crasselli M, et al. Two-dimensional reaction-diffusion equations with memory. Quart Appl Math, 2010, 68:60~64.
  • 93 Conti M, Marchini E M, Pata V. Nonclassical diffusion with memory. Math Meth Appl Sci, doi: 10.1002/mma.3120, 2015.
  • 10Grasselli M, Pata V. A reaction-diffusion equation with memory. Discrete Contin Dyn Syst, 2006, 15:1079-1088.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部