期刊文献+

带跳的完全耦合正倒向随机系统的非零和随机微分对策的变分公式及其应用 被引量:1

A variational formula for non-zero sum stochastic differential game of fully coupled forward-backward stochastic systems with jumps and some applications
原文传递
导出
摘要 本文主要研究由Brown运动和Poisson随机鞅测度共同驱动的完全耦合的正倒向随机系统的开环双人非零和随机微分对策问题.利用Hamilton函数和相应的对偶方程直接获得了性能指标的一个变分公式,其中对偶方程是一个线性正倒向随机微分方程,并且对经典的状态过程和性能指标的变分计算及其相应的Taylor展开均不需要考虑.作为应用,利用获得的变分公式在一个统一的框架下证明了开环Nash均衡点存在的一个必要条件(随机最大值原理)和一个充分条件(验证定理).本文中系统的控制区域要求是非空凸集,而且所有对手的可允许控制允许同时出现在状态方程的漂移项、扩散项和跳跃项. In this paper, an open-loop two-person non-zero sum stochastic differential game is investigated for fully coupled forward-backward stochastic system driven by a Brownian motion and a Poisson random measure.A variational formula for the cost functionals is obtained directly in terms of the Hamiltonian and the associated adjoint system which is a linear FBSDEs and neither the variational systems nor the corresponding Taylor type expansions of the state process and the cost functional will be considered. As an application, one necessary condition (a stochastic maximum principle) and one sufficient condition (a verification theorem) for the existence of open-loop Nash equilibrium points are proved by the variation formula obtained in a unified way. The control domain need to be convex and the admissible controls for both players are allowed to appear in both the drift and diffusion of the state equations.
出处 《中国科学:数学》 CSCD 北大核心 2016年第2期223-234,共12页 Scientia Sinica:Mathematica
基金 国家自然科学基金(批准号:11101140和11301177) 浙江省杰出青年科学基金(批准号:LR15A010001)资助项目
关键词 非零和微分对策 正倒向随机微分方程 NASH均衡点 non-zero sum differential games, forward-backward stochastic differential equation, Nash equilibrium point
  • 相关文献

参考文献2

二级参考文献10

  • 1Pontryagin L S, Boltyanskti V G, Camkrelidze R V, Mischenko E F. The Mathematical Theory of Optimal Control Processes. New York: John Wiley, 1962.
  • 2Bensoussan A. Lectures on stochastic control. In: Lecture Notes in Mathematics, 972, Berlin: Springer- Verlag, 1982.
  • 3Bismut J M. An introductory approach to duality in optimal stochastic control. SIAM journal on Control and Optimization, 1978, 20:62-78.
  • 4Kushner H J. Necessary conditions for continuous parameter stochastic optimization problems. SIAM Journal on Control and Optimization, 1972, 10:550-565.
  • 5Peng S. A general stochastic maximum principle for optimal control problems. SIAM Journal on Control and Optimization, 1990, 28:966-979.
  • 6Peng S. Backward stochastic differential equations and application to optimal control. Applied Mathematics and Optimization, 1993, 27(4): 125-144.
  • 7Xu W S. Stochastic maximum principle for optimal control problem of forward and backward system. Journal of Australian Mathematical Society, 1995, B(37): 172-185.
  • 8Ma J, Protter P, Yong J. Solving forward-backward stochastic differential equations explicitly-a four step scheme. Probability Theory and Related Fields, 1994, 98:339-359.
  • 9Hu Y, Peng S. Solution of a forward-backward stochastic differential equations. Probability Theory and Related Fields, 1995, 103:273-283.
  • 10Peng S, Wu Z. Fully coupled forward-backward stochastic differential equations and applications to the optimal control. SIAM Journal on Control and Optimization, 1999, 37(3): 825-843.

共引文献27

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部