摘要
本文主要研究由Brown运动和Poisson随机鞅测度共同驱动的完全耦合的正倒向随机系统的开环双人非零和随机微分对策问题.利用Hamilton函数和相应的对偶方程直接获得了性能指标的一个变分公式,其中对偶方程是一个线性正倒向随机微分方程,并且对经典的状态过程和性能指标的变分计算及其相应的Taylor展开均不需要考虑.作为应用,利用获得的变分公式在一个统一的框架下证明了开环Nash均衡点存在的一个必要条件(随机最大值原理)和一个充分条件(验证定理).本文中系统的控制区域要求是非空凸集,而且所有对手的可允许控制允许同时出现在状态方程的漂移项、扩散项和跳跃项.
In this paper, an open-loop two-person non-zero sum stochastic differential game is investigated for fully coupled forward-backward stochastic system driven by a Brownian motion and a Poisson random measure.A variational formula for the cost functionals is obtained directly in terms of the Hamiltonian and the associated adjoint system which is a linear FBSDEs and neither the variational systems nor the corresponding Taylor type expansions of the state process and the cost functional will be considered. As an application, one necessary condition (a stochastic maximum principle) and one sufficient condition (a verification theorem) for the existence of open-loop Nash equilibrium points are proved by the variation formula obtained in a unified way. The control domain need to be convex and the admissible controls for both players are allowed to appear in both the drift and diffusion of the state equations.
出处
《中国科学:数学》
CSCD
北大核心
2016年第2期223-234,共12页
Scientia Sinica:Mathematica
基金
国家自然科学基金(批准号:11101140和11301177)
浙江省杰出青年科学基金(批准号:LR15A010001)资助项目
关键词
非零和微分对策
正倒向随机微分方程
NASH均衡点
non-zero sum differential games, forward-backward stochastic differential equation, Nash equilibrium point