期刊文献+

高阶累积量自适应波束形成的改进算法 被引量:1

Improved Adaptive Beamforming Algorithm Based on Higher Order Cumulant
下载PDF
导出
摘要 针对线性约束最小方差(LCMV)算法在自适应波束形成时,存在的对噪声敏感、信噪比(SNR)较高时波束形成受小特征值扰动影响较大的情况。在基于高阶累积量的LCMV算法的基础上提出改进方法。该方法首先计算阵列接收数据的高阶累积量,然后对高阶累积量构造数据增广矩阵,进行奇异值分解求出伪逆,再用伪逆修正LCMV算法的权值,形成波束。仿真结果表明,相比于传统LCMV算法与基于高阶累积量的LCMV算法。算法能够有效地克服信噪比升高时小特征值扰动对波束形成的不良影响,且在较低快拍数下仍能有效形成波束。 For the Linear Constrained Minimum Variance (LCMV) algorithm in adaptive beamforming,there are sensitive to noise and the Signal-to-Noise Ratio(SNR)when beam forming by the small eigenvalue perturbation influence situation. In this paper,an improving method is proposed based on LCMV algorithm of high order cumulant . The method first calculates the higher-order cumulants of the received data of array,then the high order cumulant structure data augmented matrix singular value decomposition to calculate the pseudo inverse ,and pseudo inverse weight correction LCMV ,adaptive beamforming. The simulation results show that compared to the traditional LCMV algorithm and LCMV algorithm based on higher order cumulants. This algorithm can effectively overcome the adverse effects of disturbance on the signal to noise ratio increased when the beam forming small eigenvalues,and at a relatively low number of snapshots is still effective beamforming.
作者 高杨 李东生
机构地区 电子工程学院
出处 《火力与指挥控制》 CSCD 北大核心 2016年第3期36-38,47,共4页 Fire Control & Command Control
基金 国家自然科学基金面上资助项目(61179036)
关键词 高阶累积量 波束形成 线性约束最小方差准则 奇异值分解 high order cumulant beamforming linearly constrained minimum variance singular value decomposition
  • 相关文献

参考文献8

二级参考文献53

  • 1武思军,张锦中,张曙.基于四阶累积量进行阵列扩展的算法研究[J].哈尔滨工程大学学报,2005,26(3):394-397. 被引量:12
  • 2陈建,王树勋.基于四阶累积量虚拟阵列扩展的DOA估计[J].吉林大学学报(信息科学版),2006,24(4):345-350. 被引量:5
  • 3[1]J.Capon,“High-resolution frequency-wave number spectrum analysis”, Proc. IEEE, vol. 57, pp.1408-1418, Aug.1969.
  • 4[2]S.Haykin,“Adaptive filter theory”, 3rd ed., Englewood Cliffs, NJ: Prentice-Hall, 1996, pp.227-235.
  • 5[3]Mcwhirter, Shepherd,“systolic array processor for MVDR beamforming”, IEE Proc. (London), Part F,vol.136. Pp.75-80, 1989.
  • 6[4]K.J.Raghunah, V.Umapathi Reddy, “Finite Data performance analysis of MVDR beamformer with and without spatial smoothing”,IEEE Trans. On SP, vol.40,no.11, pp.2726-2736, Nov. 1992
  • 7[5]Debasis Kundu, “Modified MUSIC algorithm for estimating DOA of signals”, Signal Processing(48),pp.85-99, 1996
  • 8[6]D.W.Tufts, R.Kumaresan” Estimation of frequencies of multiple sinusoids: Making linear prediction perform like maximum likelihood”, Proc. IEEE. Vol.70, pp.975-989,1982.
  • 9[7]S.Haykin,J.P.Keily, “some aspects of array signal processing”, IEE. Proc.(London), part F, vol.139, no.1,pp.1-25, Feb. 1992
  • 10[8]P.C.Hansen, “Reducing the number of sweeps in Hestenes method”, SVD and Signal processing. E.F. Deprettere ED., Elsevier Science Publishers B.Vi.(North-Holland), 1988

共引文献49

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部