期刊文献+

最小低阶Lee矩混杂准则及其应用 被引量:1

Minimum Lee-moment aberration and its applications
原文传递
导出
摘要 众所周知,有多种准则可以用于比较和评价部分因析设计的优劣,在这些准则中,最小低阶矩混杂准则既简单明了,又计算量较小.但是,该准则中的各阶矩是基于任意两次试验之间的Hamming距离来定义的,由此导致了该准则具有一定的局限性.本文用Lee距离代替Hamming距离来定义新的矩,在此基础上提出了最小低阶Lee矩混杂准则,并用它来比较高水平部分因析设计的优劣.同时,本文通过建立最小低阶Lee矩混杂准则与其他设计筛选准则之间的解析关系,来验证这一新准则的统计合理性. Various criteria have been proposed to compare and assess fractional factorial designs. Among them the minimum moment aberration criterion is conceptually simple and computationally cheap. However, the power moments in the minimum moment aberration criterion depend on the Hamming distances between two runs, which leads to minimum moment aberration criterion having a few defects. In this paper, we use Lee distance instead of Hamming distance to define power moments, and propose the minimum Lee-moment aberration criterion to compare and assess multi-level fractional factorial designs. Some relationships between minimum Lee-moment aberration criterion and other criteria are also studied, which provides a significant statistical justification of minimum Lee-moment aberration criterion.
作者 邹娜 覃红
出处 《中国科学:数学》 CSCD 北大核心 2016年第1期97-110,共14页 Scientia Sinica:Mathematica
基金 国家自然科学基金(批准号:11301546 11271147和11471136) 中南财经政法大学创新团队(批准号:31541511201)资助项目
关键词 Lee距离 Lee矩 最小低阶矩混杂 均匀性 Lee distance, Lee-moment, minimum moment aberration, uniformity
  • 相关文献

参考文献1

二级参考文献10

  • 1Chatterjee K, Fang K T, Qin H. Uniformity in factorial designs with mixed levels. J Statist Plann Inference, 2005, 128: 593-607.
  • 2Fang K T, Li R, Sudjianto A. Design and Modelling for Computer Experiments. London: Chapman and Hall, 2005.
  • 3Fang K T, Ma C X, Mukerjee R. Uniformity in fractional factorials. In: Fang K T, Hickernell F J, Niederreiter H, eds. Monte Carlo and Quaai-Monte Carlo Methods in Scientific Compnting. Berlin: Springer-Verlag, 2002, 232-241.
  • 4Fang K T, Wang Y. Number-Theoretic Methods in Statistics. New York: Chapman and Hall, 1994.
  • 5Hickernell F J, Liu M Q. Uniform designs limit aliasing. Biometrika, 2002, 89: 893-904.
  • 6Mukerjee R, Wu C F J. On the existence of saturated and nearly saturated asymmetrical orthogonal arrays. Ann Statist, 1995, 23: 2102-2115.
  • 7Xu H. Minimum moment aberration for nonregular designs and supersaturated designs. Statist Sinica, 2003, 13: 691-708.
  • 8Xu H, Wu C F J. Generalized minimum aberration for asymmetrical fractional factorial designs. Ann Statist, 2001, 29: 549-560.
  • 9Zhon Y D, Ning J H, Song X B. Lee discrepancy and its applications in experimental designs. Statist Probab Lett, 2008, 78: 1933-1942.
  • 10Zou N, Ren P, Qin H. A note on Lee discrepancy. Statist Probab Lett, 2009, 79: 496-500.

共引文献6

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部