期刊文献+

具有对称自同态的环 被引量:1

Rings with Symmetric Endomorphisms
原文传递
导出
摘要 通过引入对称α-环的概念,拓广对称环的研究.讨论对称α-环与相关环的关系,给出对称α-环的一些扩张性质,证明了1)设α是约化环R的自同态且α-1)=1.如果R是对称α-环,则R[x]/〈x^n〉是对称α-环;2)设α是右Ore环R的自同构,Q(R)是R的典范右商环.如果R是对称环,则R是对称α-环当且仅当Q(R)是对称α-环. In this paper,we extend the study of symmetric rings by introducing the concept of symmetric a-rings.We discuss the relationships between symmetric a-rings and related rings and investigate some extensions of symmetric a-rings.It is shown that l)let a be a endomorphism of a reduced ring R with a(l) = 1.If R is a symmetric a-ring,then R[x]/(x^n)is a symmetric a-ring;2) Let a be a automorphism of a right Ore ring R and Q(R) the classical right quotient ring of R.If R is symmetric,then R is a symmetric a-ring if and only if Q(R)is a symmetric a-ring.
出处 《数学的实践与认识》 北大核心 2016年第4期215-223,共9页 Mathematics in Practice and Theory
基金 国家自然科学基金(11071097) 江苏省自然科学基金(BK20141476)
关键词 对称环 对称α-环 Dorroh-扩张 典型商环 多项式环 symmetric ring symmetric α-ring Dorroh extension classical quotient ring polynomial ring.
  • 相关文献

参考文献10

  • 1Cohn P M.Reversible rings[J].Bull London Math Soc,1999,31(6):641-648.
  • 2Hong C Y,Kim N K,Kwak T K.Extensions of generalized reduced rings[J].Algebra Colloq,2005,12(2):229-240.
  • 3Hong C Y,Kim N K,Kwak T K.Ore extensions of Baer and p.p.-rings[J].Pure Appl Algebra,2000,151:215-226.
  • 4Shin G Y.Prime ideals and sheaf representation of a pseudo symmetric rings[J].Trans Amer Math Soc,1973,184:43-60.
  • 5Baser M,Harmanci A,Kwak T K.Generalized semicommutative rings and their extensions[J].Bull Korean Math Soc,2008,45(2):285-297.
  • 6Lambek J.On the representation of modules by sheaves of factor modules[J].Canad Math Bull,1971,14(3):359-368.
  • 7Kwak T K.Extensions of extended symmetric ring[J].Bull Korean Math Soc,2007,44(4):777-788.
  • 8Baser M,Kaynarca F,Kwak T K.Ring endomorphisms with the reversible condition[J].Comm Korean Math Soc,2010,25(3):349-364.
  • 9Huh C,Kim N K,Lee Y.Basic examples and extensions of symmetric rings[J].Pure Appl Algebra,2005,202:154-167.
  • 10Rege M B,Chhawchharia S.Armendariz rings[J].Proc Japan Acad Ser A Math Sci,1997,73(1):14-17.

同被引文献7

  • 1Mason G.Reflexive ideals[J].Comm Algebra,1981,9:1709-1724.
  • 2Kim J Y,Baik J U.On idempotent reflexive rings[J].Kyungpook Math J,2006,46:597-601.
  • 3Kwak T K,Lee Y.Reflexive property of rings[J].Comm Algebra,2012,40(4):1576-1594.
  • 4Keun T,Lee Y.Reflexive property on idempotents[J].Bull Korean Math Soc,2013,50(6):1957-1972.
  • 5Baser M,Kaynaxca F,Kwak T K.Ring Endomorphisms with the Reversible Condition[J].Comm Korean Math Soc,2010,25(3):349-364.
  • 6Jordan D A.Bijective extensions of injective rings endomorphism[J].J Lond Math Soc,1982,25:435-448.
  • 7Dorroh J L.Concerning adjunctions to algebras,Bull Amer Math Soc,1932,38(2):85-88.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部