期刊文献+

几类图的拉普拉斯特征值的前三项和的上界

Upper Bound of the Sum of the First 3 Laplacian Eigenvalues of Several Classes of Graphs
原文传递
导出
摘要 设G是一个顶点集为V(G),边集为E(G))的简单图.S_k(G)表示图G的拉普拉斯特征值的前k项部分和.Brouwer et al.给出如下猜想:S_k(G)≤e(G)+((k+1)/2),1≤k≤n.证明了当k=3时,对边数不少于n^2/4-n/4的图及有完美匹配或有6-匹配的图,猜想是正确的. Let G be a simple graph with vertex set V(G) and edge set E(G).Denote the sum of the first k Laplacian eigenvalues of graph G by Sk{G).Brouwer et al.proposed a conjecture that Sk(G) ≤ e(G) +((k+1)/2),where 1 ≤k≤ n,for any simple graph G.In this paper,when k = 3,we prove that the conjecture is true for several classes of graphs as follows:these graphs whose number of edges is greater than or equal to(n^2)/4-n/4,these graphs which have perfect matching and these graphs which have 6-mathing.
作者 王守中 江蓉
出处 《数学的实践与认识》 北大核心 2016年第4期258-261,共4页 Mathematics in Practice and Theory
关键词 拉普拉斯矩阵 拉普拉斯特征值 拉普拉斯特征值前k项部分和 Laplacian matrix Laplacian eigenvalue the sum of the first k Laplacian eigenvalues
  • 相关文献

参考文献5

  • 1Brouwer A E,Haemers W H.Spectra of graphs[M].New York:Springer,2012.
  • 2Haemers W H.On the sum of Laplacian eigenvalues of graphs[J].Linear Algebra and its Applications,2010,432(9):2214-2221.
  • 3Rojo O,Soto R,Rojo H.Bounds for Sums of Eigenvalues and Applications[J].Computers and Mathematics with Applications,2000,39(7-8):1-15.
  • 4D.de Caen.An upper bound on the sum of the squares of the degrees of a graph[J].Discrete Math,1998,185(1-3):245-248.
  • 5Zhou B.On Laplacian eigenvalues of a graph[J].Z.Naturforsch,2004,59(3):181-184.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部