期刊文献+

copula函数信度模型在风险定价中的应用——基于我国车险数据

Application of Copula Credibility Model in Ratemaking——Based on Auto Insurance Data
原文传递
导出
摘要 信度模型能够刻画风险类别组内的相关性,是风险定价中应用最广泛的模型之一。相较传统信度模型,基于copula函数的信度模型能够突破传统信度模型变量间的相关性不随时间变化的假设限制。本文将copula函数信度模型应用到我国车辆损失保险的定价中,以广义线性模型作为边际分布,利用t-copula函数度量赔付变量间的时间相关性,建立多元联合分布,并计算赔付金额的未来分布和预测值。实证结果表明不同地区车辆损失保险的赔付情况有差异,当年赔付金额对后续赔付的影响随时间减弱;t-copula函数AR(1)形式相关系数矩阵的信度模型的预测误差最小,预测结果优于传统信度模型,说明copula函数信度模型在风险定价的实践工作中有应用价值。 The credibility model can characterize the dependencies among claims within a risk class, which is one of the most widely used models in ratemaking. Compared to the traditional credibility models, Copula credibility model can relax the assumption that dependencies among claims are constant over time. In this article, we applied- Copula credibility model to auto own-damage insurance ratemaking, using generalized linear model as the marginal distributions and t-copula measuring correlations among claims. We built a multivariate joint distribution to generate predictive distributions and compute the predictors of claims. The empirical results show that average claims of auto own-damage insurance show regional disparities and the claim experience of current year poses diminishing influence on claims of the following years. The t-copula credibility with AR ( 1 ) correlation matrix displays the minimum sum of squared prediction errors and gets better predictors than traditional credibility models, which means that Copula credibility model is a valuable tool in ratemaking practice.
作者 王茜
出处 《保险研究》 CSSCI 北大核心 2016年第1期54-64,共11页 Insurance Studies
基金 国家留学基金委员会联合培养博士项目资助(编号201406490022)
关键词 COPULA函数 信度模型 风险定价 Copula credibility model ratemaking
  • 相关文献

参考文献14

  • 1张连增,胡祥.财险公司赔款与直接理赔费用的相关性分析[J].保险研究,2013(11):43-49. 被引量:2
  • 2沈立,谢志刚.基于财险公司定价风险的资本要求计量[J].保险研究,2014(8):42-53. 被引量:3
  • 3Bailey, A. A Generalized Theory of Credibility [ J ]. Proceedings of the Casualty Actuarial Society, 1945, (32) :13 -20.
  • 4Buhlmann, H. Experience Rating and Credibility[ Jl- ASTIN Bulletin, 1967, (4) : 199 - 207.
  • 5Frees, E. W. , Valdez, E. Understanding relationships using copulas [ J ]. North American Actuarial Journal, 1998,2 (1): 1-25.
  • 6Frees, E. W., Wang, P. Credibility using copulas [ J ]. North American Actuarial Journal, 2005, ( 2 ) :31 -48.
  • 7Frees,E. Wang, P. Copula credibility for aggregate loss models [ J]. Insurance: Mathematics and Econom- ics,2006, (38) :360 -373.
  • 8Jewell, W. S. Credible Means are Exact Bayesian for Exponential Families. Astin Bulletin, 1974,8 ( 1 ) : 77 - 90.
  • 9Joe, H. Multivariate models and dependence concepts [ M ]. London : Chapman & Hall/CRC, 1997.
  • 10Keffer, R. An Experience Rating Formula[ J]. Transactions of the Actuarial Society of America, 1929, (30) : 130 -39.

二级参考文献23

  • 1王上文.我国非寿险公司最低持续资本要求的比较[J].山西财经大学学报,2005,27(5):112-116. 被引量:4
  • 2占梦雅.中国非寿险业法定偿付能力额度标准的合理性分析与实证分析[J].财经理论与实践,2006,27(2):51-54. 被引量:11
  • 3王上文.保险公司风险基础资本(RBC)监管制度[D].上海:上海财经大学,2007.
  • 4Demarta, S., McNeil, J. The t copula and related copulas [ J ]. International Statistical Review, 2005,73 ( 1 ) : 111 - 129.
  • 5Dupuis, D. J. , Jones, B. L. Multivariate extreme value theory and its usefulness in understanding risk [ J ]. North American actuarial journal, 2006,10 (4) : 1 - 27.
  • 6Durrleman, V. , Nikeghbali, A. , Roncalli, T. Which copula is the right one? [ J]. Working paper, Credit Lyonnais, 2000.
  • 7Embrechts, P. , Kltippelberg, C. , Mikosch, T. Modelling extremal events : for insurance and finance [ M ]. Springer, 1997.
  • 8Frees, E. W. , Valdez, E. A. Understanding the relationship using copulas [ J ]. North American actuarial jour- nal,1998,2(1) :1 -25.
  • 9Kaas, R. , Goovaerts, M. , Dhaene, J. , Denuit. M. Modern actuarial risk theory : using R [ M ]. Second edition . Springer, 2008.
  • 10Klugman, S. A. , Panjer, H. H. , Willmot G E. Loss models : from data to decisions [ M ]. Fourth edition. Wiley, 2012.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部