期刊文献+

基于数字阵列雷达导引头的角度超分辨估计算法研究 被引量:3

Research on Super-Resolution DOA Estimation in Digital Array Radar Seeker
下载PDF
导出
摘要 针对导引头对多目标角度超分辨需求,提出了一种基于数字阵列雷达导引头的角度超分辨估计算法。对多重信号分类(MUSIC)算法空间谱的二次求导,搜索其负向谱峰,可获得较高的多目标角度分辨率和角估计精度,仿真验证了不同条件下方法的有效性和可行性。该算法复杂度较低,利于工程实现。 Aim to the requirement that the seekers need multiple target direction of arrival(DOA)superresolution,a method of super-resolution DOA estimation in the digital array radar seeker was proposed in this paper.By calculating the second differentiation for the multiple signal classification(MUSIC)spatial spectrum and seeking the negative peaks,the proposed estimation method could obtain high angle resolution and angle precision.The simulation results proved the effectiveness and feasibility of the method proposed under different conditions.The method had the low computational complexity and could be easily applied to engineering.
出处 《上海航天》 2016年第1期29-32,60,共5页 Aerospace Shanghai
关键词 雷达导引头 角度超分辨 MUSIC算法 谱峰搜索 Radar seeker Direction of arrival super-resolution MUSIC algorithm Peak seeking
  • 相关文献

参考文献9

  • 1徐松涛,杨绍全.被动单脉冲导引头干扰源角度分辨[J].西安电子科技大学学报,2004,31(1):102-105. 被引量:13
  • 2KAINAM T W, MICHAEL D Z. Selinitiating MU SIC-based direction finding and polarization estimation in spatio-polarizational beamspace[J]. IEEE Transac- tions on Antennas and Propagation, 2000, 48 (8) 1235-1245.
  • 3KRIM H, VIBERG M. Two decades of array signal processing research[J]. IEEE Signal Processing Magazine, 1996, 13(4): 67-94.
  • 4STOICA P, NEHORAI A. MUSIC, maximum like lihood, and Cramer-Rao bound= further results and corrtparisons[J]. IEEE Transactions on ASSP, 1990, 38(12) : 2140-2150.
  • 5PAI. P, VAIDYANATHAN P P. Multiple level nes ted array: an efficient geometry for 2th order cumulant based array processingEJ2. IEEE Transactions on Signal Processing, 2012, 60(3): 1253-1269.
  • 6XIN J M, AKIRA S. Computationally efficient sub- space based method for direction-of-arrival estimation without eigen decomposition[J]. IEEE Transactions on Signal Processing, 2004, 52(4): 876- 893.
  • 7RAO B D, HARI K V. Weighted subspace methods and spatial smoothing: analysis and comparison[J2. IEEE Transactions on Signal Processing, 1993, 41 (2) : 788 -803.
  • 8李建峰,张小飞,汪飞.基于四元数的Root-MUSIC的双基地MIMO雷达中角度估计算法[J].电子与信息学报,2012,34(2):300-304. 被引量:17
  • 9邓维波,陈鹏.一种基于波束空间的单次快拍MUSIC算法[J].通信技术,2010,43(4):22-24. 被引量:6

二级参考文献33

  • 1冯宗哲 程相君 等.模式识别原理[M].西安:西安电子科技大学,1998..
  • 2Ren Q S,Willis A J.Extending MUSIC to Single Snapshot and on Line Direction Finding Applications[C]// Proc of IEEE Radar 97.Edinburgh.UK:IEEE,1997:783-787.
  • 3Schmidt R O.Multiple Emitter Location and Signal Parameter Estimation[J].IEEE Trans on AP,1986,AP-34(03):276-280.
  • 4Zoltowski M D.Beamspace Root-Music[J].IEEE Trans on SP,1993,41(01):344-364.
  • 5Fishler E, Haimovich A, Blum R S, et al.. MIMO radar: an idea whose time has come[C]. Proceeding of the IEEE Radar Conference, Philadelphia, PA, Apr. 2004: 71-78.
  • 6Li J, Liao G, and Griffiths H. Bistatic MIMO radar space- time adaptive processing[C]. 2011 IEEE International Radar Conference, Westin Crown Center in Kansas City, Missouri, May 2011: 498-502.
  • 7Wu X H, Kishk A A, and Glisson A W. MIMO-OFDM radar for direction estimation[J]. IET Radar, Sonar & Navigation, 2010, 4(1): 28-36.
  • 8Yah H, Li J, and Liao G. Multitarget identification and localization using bistatic MIMO radar systems[J]. EURASIP Journal on Advances in Signal Processing, 2008, Article ID: 283483, 1-8.
  • 9Li J, Stoica P, Xu L, et al.. On parameter identifiability of MIMO radar[J]. IEEE Signal Processing Letters, 2007, 14(12) 968-971.
  • 10Li J, Liao G, Ma K, and Zcng C. Waveform decorrelation for multitarget localization in bistatic MIMO radar systems[C]. 2010 IEEE International Radar Conference, Washington, May 2010: 21-24.

共引文献33

同被引文献29

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部