期刊文献+

基于迭代光滑L_(1/2)算法的变量选择

Iterative smooth L_(1/2) algorithm for variable selection
下载PDF
导出
摘要 变量选择是统计学中重要的问题之一,而利用正则化方法来进行变量选择是近年来研究的热点.采用一种迭代光滑L_(1/2)算法,通过增加参数稀疏化阈值条件,使其中绝对值较小的回归参数稀疏为0,从而实现变量选择的功能.将该算法与Lasso(least absolute shrinkage and selection operator),自适应Lasso以及L_(1/2)正则化方法进行比较,数值模拟结果表明该算法同样具有良好的变量选择和预测能力,最后将该算法应用到实际的前列腺数据分析. Variable selection is one of the most important problems in statistics, and regularization method for variable selection has attracted a great attention in recent years. In this paper, an iterative smooth L1/2 algorithm is proposed, which sets the small regression parameters in magnitude to zero by a given threshold value for variable selection. A series of numerical simulations are conducted for comparing the iterative smooth L1/~ algorithm with Lasso (least absolute shrinkage and selection operator), adaptive Lasso, and L1/2 regularization. Numerical results show that the iterative smooth L1/2 algorithm also has a good ability for variable selection and prediction. Finally, the proposed algorithm is applied to the real prostate cancer data analysis.
机构地区 上海大学理学院
出处 《应用数学与计算数学学报》 2016年第1期25-34,共10页 Communication on Applied Mathematics and Computation
关键词 迭代光滑L1/2 Lasso (least ABSOLUTE SHRINKAGE and selection operator) 自适应Lasso L1/2正则化 稀疏 阈值 iterative smooth LI/2 Lasso (least absolute shrinkage and selection operator) adaptive Lasso LI/2 regularization sparse threshold
  • 相关文献

参考文献5

二级参考文献57

  • 1徐国祥 胡清友.统计预测和决策[M].上海:上海财经大学出版社,2002(7)..
  • 2Akaike H. Information theory and an extension of the maximum likelihood principle. In: Petrov B N, Caki F, eds. Second International Symposium on Information Theory. Budapest: Akademiai Kiado, 1973. 267 -281.
  • 3Schwarz G. Estimating the dimension of a model. Ann Statist, 1978, 6:461-464.
  • 4Mallows C L. Some comments on Cp. Technometrics, 1973, 15:661-675.
  • 5Tibshirani R. Regression shrinkage and selection via the Lasso. J Royal Statist Soc B, 1996, 58:267-288.
  • 6Donoho D L, Huo X. Uncertainty principles and ideal atomic decomposition. IEEE Trans Inf Theory, 2001, 47:2845-2862.
  • 7Donoho D L, Elad E. Maximal sparsity representation via l1 minimization. Proc Natl Acal Sci, 2003, 100:2197-2202.
  • 8Chen S, Donoho D L, Saunders M. Atomic decomposition by basis pursuit. SIAM Rev, 2001, 43:129-159.
  • 9Fan J, Heng P. Nonconcave penalty likelihood with a diverging number of parameters. Ann Statist, 2004 32:928-961.
  • 10Zou H. The adaptive Lasso and its oracle properties. J Amer Statist Assoc, 2006, 101:1418-1429.

共引文献93

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部