期刊文献+

QTT分解及其在高维数字信号处理上的应用

QTT decomposition and its applications to high dimensional signal process
下载PDF
导出
摘要 近几年张量列(TT)和量子化张量列(QTT)分解方法被证明是一种非常有效的特征降维工具,并已广泛应用于PDE、算法加速和信号处理等领域.给出了关于QTT分解的一些新结果.首先用分块张量的方法扩展了QTT的定义,使之适用于更加复杂的降维问题.同时指出新定义的QTT分解也是一种基于流形学习的降维工具.其次讨论了QTT与小波变换和卷积在结构上的联系与区别,并指出QTT也是一种特征提取工具.最后将QTT分解应用于三维数据(MRI图像)的去噪和边缘检测,取得了不错的效果. In recent years, tensor train (TT) and quantized tensor train (QTT) decomposition have proved to be a very effective method in feature dimension reduction, and it has been widely used in the field of PDE, algorithm acceleration and signal processing, etc. We present some new results about the QTT decomposition. Firstly, we extend the definition of the QTT through block-tensor, which can be applied to more complex dimension reduction problems. At the same time, it is pointed out that the new definition of the QTT decomposition is a dimension reduction tool based on manifold learning. Secondly, we discuss the relationship and difference between QTT and wavelet transformation and convolution in struc- ture, and point out that QTT is also a feature extraction tool. Finally, we apply the QTT decomposition to the denoising and edge detection of MRI images, and achieve good results.
作者 宋坚 张向韵
出处 《应用数学与计算数学学报》 2016年第1期35-50,共16页 Communication on Applied Mathematics and Computation
基金 国家自然科学基金资助项目(91230201 11471122)
关键词 张量分解 QTT分解 高维边缘检测 高维去噪 tensor decomposition QTT decomposition high dimensional edge detection high dimensional denoising
  • 相关文献

参考文献18

  • 1Kolda T G, Bader B W. Tensor decompositions and applications [J]. SlAM Review, 2009, 51(3): 455-500.
  • 2Cichocki A. Tensor networks for big data analytics and large-scale optimization problems [J]. Numerical Analysis, 2014, arXiv: 1407.3124.
  • 3Phan A H, Cichocki A. Tensor decompositions for feature extraction and classification of high dimensionM datasets [J]. Nonlinear Theory and Its Applications, IEICE, 2010, 1(1): 37-68.
  • 4Cichocki A. Era of big data processing: a new approach via tensor networks and tensor de- compositions [J]. Computer Science, 2014, arXiv: 1403.2048.
  • 5Khoromskaia V, Khoromskij B, Schneider R. QTT representation of the Hartree and exchange operators in electronic structure calculations [J]. Computational Methods in Applied Mathe- matics , 2011, 11(3): 327-341.
  • 6Oseledets I V. Constructive representation of functions in low-rank tensor formats [J]. Con- structive Approximation, 2013, 37(1): 1-18.
  • 7Oseledets I V. Tensor-train decomposition [J]. SIAM Journal on Scientific Computing, 2011, 33(5): 2295-2317.
  • 8Hiibener R, Nebendahl V, Dfir W. Concatenated tensor network states [J]. New Journal of Physics, 2010, 12(2): 025004.
  • 9Van Loan C F. Tensor Network Computations in Quantum Chemistry [R/OL]. (2008-3-20)[2015- 03-02]. http://www.cs.cornell.edu/cv/OtherPdf/ZeuthenCVL.pdf.
  • 10Holtz S, Rohwedder T, Schneider R. On manifolds of tensors of fixed TT-rank [J]. Numerische Mathematik, 2012, 120(4): 701-731.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部