摘要
利用块Krylov子空间方法结合GPU(图形处理单元)对线性方程组求解进行加速.利用GPU进行计算具有并行度高的好处,并能提高计算效率.数值算例说明,块算法在GPU上的运行效率要高于非块算法在CPU上的运行效率.但是对于块算法,谨慎地选择块的大小对于提升整个问题求解的速度也是非常重要的.
The block Krylov subspace method is used to speed up the solution of the system of the linear equation by using the GPU. By the advantages of high degree of parallelism of the GPU, the computational efficiency can be improved. The numerical example shows that the running efficiency of the block algorithm on the GPU is higher than that of the non-block algorithm on the CPU. ~rthermore, for the block algorithm, the size of the block is also very important for improving the speed of the whole problem.
出处
《应用数学与计算数学学报》
2016年第1期138-147,共10页
Communication on Applied Mathematics and Computation
关键词
块子空间迭代算法
GPU加速
大规模稀疏线性代数方程组
block subspace iterative methods
GPU-based acceleration
large scaled linear algebra equations with sparse coefficient matrix