期刊文献+

基于AIS数据的渡轮异常运动模式监测 被引量:9

Monitoring of abnormal movement patterns of ferry based on AIS data
下载PDF
导出
摘要 为实时监测环境、操作行为等引起的船舶异常运动情况,采用船舶自动识别系统(AIS)的二维船舶观测位置坐标,运用多核函数非参数估计方法,估计船舶正常运动模式的概率密度函数;根据假设检验方法,设定船舶异常运动判断标准,导入AIS实时监测数据,检验判别算法的有效性。结果表明,用判别算法能够实时监测渡轮运行情况,及时检测设定航线出现异常运动的渡轮,为海事部门自动监管船舶安全航行提供参考依据。 The paper was aimed at studying the possibility for monitoring and controlling ferry trajectory,and for issuing a early warning in the event of anomalies in the trajectory on the basis of data from AIS.A method was worked out for calculating distribution probabilities of ferry trajectories. A model was built for distribution of ferry trajectories. A criterion was established for judging an anomaly in ferry trajectory on the basis of the hypothesis test method. The model was verified by inputting real-time AIS monitoring data. The results show that the model can be used to achieve real-time monitoring of ferry motion,detect abnormal movement of ferry,and provide maritime authorities with a sound basis for ensuring safe navigation of ferries.
出处 《中国安全科学学报》 CAS CSCD 北大核心 2016年第1期100-103,共4页 China Safety Science Journal
基金 国家自然科学基金资助(51579201) 湖北省自然科学基金资助(2014ZFB878) 武汉理工大学自主创新研究基金资助(2015-HY-B1-09)
关键词 自动识别系统(AIS) 船舶运动模式 核密度估计 假设检验 异常运动模式 automatic identification system(AIS) motion patterns of vessel kernel density estimation hypothesis testing abnormal motion patterns
  • 相关文献

参考文献8

  • 1CARTHEL C, CORALUPPI S, GRIGNAN P P. Multisensory tracking and fusion for maritime surveillance [C]. Information Fusion, 2007, 10th International Conference on.IEEE,2007: 1-6.
  • 2BOMBERGER N A, RHODES B J, SEIBERT M, et al. Associative learning of vessel motion patterns for maritime situa- tion awarenessFC].Information Fusion,2006,9th International Conference on.IEEE,2006: 1-8.
  • 3RHODES B J, BOMBERGER N A, ZANDIPOUR M. Probabilistic associative learning of vessel motion patterns at multi- ple spatial scales for maritime situation awareness[C]. Information Fusion, 2007 10th International Conference on.IEEE, 2007,1-8.
  • 4甄荣,邵哲平,潘家财,赵强.基于统计学理论的船舶轨迹异常识别[J].集美大学学报(自然科学版),2015,20(3):193-197. 被引量:18
  • 5徐铁,蔡奉君,胡勤友,杨春.基于卡尔曼滤波算法船舶AIS轨迹估计研究[J].现代电子技术,2014,37(5):97-100. 被引量:34
  • 6魏玮,邱洪生,王涛.密度聚类算法挖掘船舶航迹图谱的研究.第九届中国通信学会学术年会论文集,2012:111-114.
  • 7张煜东,颜俊,王水花,吴乐南.非参数估计方法[J].武汉工程大学学报,2010,32(7):99-106. 被引量:13
  • 8BRUCE E Hansen. Lecture notes on nonparametricsE R.Lecture Notes ,2009.

二级参考文献49

  • 1成光,刘卫东,魏尚俊,张蕊.基于卡尔曼滤波的目标估计和预测方法研究[J].计算机仿真,2006,23(1):8-10. 被引量:9
  • 2邵哲平,孙腾达,潘家财,纪贤标.基于ECDIS和AIS的船舶综合信息服务系统的开发[J].中国航海,2007,30(2):30-33. 被引量:33
  • 3盛骤,谢式千,潘承毅.概率论与数理统计[M].北京:高等教育出版社,2008:276-281.
  • 4Neumeyer N. A note on uniform consistency of monotone function estimators [J]. Statistics Probability Letters, 2007,77 (7) : 693 - 703.
  • 5Sheena Y,Gupta A K. New estimator for functions of the canonical correlation coefficients [J]. Journal of Statistical Planning and Inference, 2005,131 ( 1 ) : 41 - 61.
  • 6Wasserman I.. All of Nonparametric Statistics [M]. New York:Springer-Verlag, Inc.
  • 7Hansen C B. Asymptotic properties of a robust variance matrix estimator for panel data when T is large [J]. Journal of Econometrics, 2007, 141 (2): 597-620.
  • 8Pokharel P P, Liu W F, Principe J C. Kernel least mean square algorithm with constrained growth [J]. Signal Processing, 2009,89 (3): 257 - 265.
  • 9Kalivas J H. Cyclic subspace regression with analysis of the hat matrix [J]. Chemometrics and Intelligent Laboratory Systems,1999,45(1) :215 - 224.
  • 10Geckinli N C, Yavuz D. A set of optimal discrete linear smoothers[J]. Signal Processing, 2001,3 ( 1 ):49 - 62.

共引文献60

同被引文献67

引证文献9

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部