摘要
为实时监测环境、操作行为等引起的船舶异常运动情况,采用船舶自动识别系统(AIS)的二维船舶观测位置坐标,运用多核函数非参数估计方法,估计船舶正常运动模式的概率密度函数;根据假设检验方法,设定船舶异常运动判断标准,导入AIS实时监测数据,检验判别算法的有效性。结果表明,用判别算法能够实时监测渡轮运行情况,及时检测设定航线出现异常运动的渡轮,为海事部门自动监管船舶安全航行提供参考依据。
The paper was aimed at studying the possibility for monitoring and controlling ferry trajectory,and for issuing a early warning in the event of anomalies in the trajectory on the basis of data from AIS.A method was worked out for calculating distribution probabilities of ferry trajectories. A model was built for distribution of ferry trajectories. A criterion was established for judging an anomaly in ferry trajectory on the basis of the hypothesis test method. The model was verified by inputting real-time AIS monitoring data. The results show that the model can be used to achieve real-time monitoring of ferry motion,detect abnormal movement of ferry,and provide maritime authorities with a sound basis for ensuring safe navigation of ferries.
出处
《中国安全科学学报》
CAS
CSCD
北大核心
2016年第1期100-103,共4页
China Safety Science Journal
基金
国家自然科学基金资助(51579201)
湖北省自然科学基金资助(2014ZFB878)
武汉理工大学自主创新研究基金资助(2015-HY-B1-09)
关键词
自动识别系统(AIS)
船舶运动模式
核密度估计
假设检验
异常运动模式
automatic identification system(AIS)
motion patterns of vessel
kernel density estimation
hypothesis testing
abnormal motion patterns