期刊文献+

基于协作行为的半自动人员分配策略

Semi-automatic staff assignment strategy based on collective behavior
下载PDF
导出
摘要 为了对业务流程进行手工分配以找出合适的工作人员,提出一种新的方法,该方法半自动地进行业务过程人员分配,在很大程度上减少了手工分配的工作量。新方法基于谱机器学习框架,同时考虑活动的前序关系和工作者的协作行为,这两种关系隐含着活动的相关属性,能够取得较好的人员分配效果。新方法可以学习各种类型的活动,基于业务过程事件日志为每一个执行者分配活动。经过新方法训练所得的模型,可以实现新活动的半自动人员分配。实验证明所提新方法在两个制造企业数据集上可以获得非常高的精确度。 To find the suitable staff by manual assigning the business process,a semi-automatic staff assignment method which could decrease the workload of monitors based on a novel spectral machine learning framework was proposed.Based on machine learning framework,the precedence relationships of activities and the collective behaviors of actors were both considered by the new method.The new method could learn all kinds of activities and allocate activities to each actor based on process event log.The new model obtained by training could realize the semiautomatic staff assignment of new activities.The experimental results showed that the high prediction accuracy with the proposed method on the real-world datasets of two manufacturing enterprise applications was obtained respectively.
出处 《计算机集成制造系统》 EI CSCD 北大核心 2016年第2期448-454,共7页 Computer Integrated Manufacturing Systems
基金 国家973计划资助项目(2015CB351705) 国家自然科学基金资助项目(61472001 61572030) 教育部人文社会科学研究青年基金资助项目(14YJCZH169 15YJC860034) 安徽省自然科学基金资助项目(1608085MF130)~~
关键词 人员分配 资源管理 商业过程 协作行为 机器学习 staff assignment resource management business process collective behavior machine learning
  • 相关文献

参考文献12

  • 1LIU Xiao, YUN Yang, DONG Yuan, et al. Do we need to handle every temporal violation in scientific workflow systems [J]. ACM Transactions on Software Engineering and Method- ology,2014,23(1) :5-15.
  • 2ZUR MUEHLEN M. Organizational management in workflow applications-issues and perspectives[J]. Information Technolo- gy and Management, 2004,5 (3/4) : 271-291.
  • 3RUSSELL N, TER HOFSTEDE A H M, EDMOND D. Wor- kflow resource patterns[D]. Eindhoven,the Nethland:Eindhoven University of Technology, 2005.
  • 4LY L T, RINDERLE S, DADAM P. Integration and verifica- tion of semantic constraints in adaptive process management systems[J]. Data Knowledge Engineering, 2008,64 (1) : 3-23.
  • 5GRIGORI D, CASATI F, DAYAL U. Improving business pr- ocess quality through exception understanding[J]. Prediction, and Prevention, 2001,1 : 159-168.
  • 6GRIGORI D, CASATI F, DAYAL U. Business process intelli- gence[J]. Computers in Industry, 2004,53 (3) : 321-343.
  • 7MORE J S, LINGAM C. Reality mining based on social net- work analysis[C]//Proceedings of 2015 International Confer- ence on Communication, Information Computing Technolo- gy. Washington,D. C. ,USA:IEEE,2015.
  • 8GUO Y, SCHUURMANS D. Semi-supervised multi-label classifi- cation[M]//Machine Learning and Knowledge Discovery in Data- bases. Berlin,Germany:Springer-Verlag,2012:355-370.
  • 9LAMBIOTTE R, SALNIKOV V, ROSVALL M. Effect of memory on the dynamics of random walks on networks[J]. Journal of Complex Networks,2015,3(2) :177-188.
  • 10ZAFARIAN A, ROKNI A, KHADIVI S. Semi-supervised learning for named entity recognition using weakly labeled training data[C]//Proceedings of 2015 International Sympo- sium on Artificial Intelligence and Signal Processing. Wash- ington,D. C. ,USA:IEEE,2015.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部