期刊文献+

316L不锈钢在表面机械滚压处理时的形变诱导马氏体相变和组织细化过程 被引量:10

Processes of Deformation-induced Martensite Transformation and Microstructure Refinement of 316L Stainless Steel during Surface Mechanical Rolling Treatment
原文传递
导出
摘要 采用表面机械滚压处理(SMRT)在316L不锈钢表面制备出梯度纳米结构(GNS)表层,研究了SMRT对GNS表层中的相组成和微观组织演变的影响机制。结果表明:经SMRT后316L不锈钢表层的奥氏体相发生形变诱导马氏体相变,且马氏体含量随着SMRT压下量的增大而增多;微观组织的细化过程先后经历了高密度位错生成和交互作用、形变孪生、形变诱导马氏体相变和马氏体晶粒细化过程,最终在最表层形成以马氏体相为主、晶粒尺寸~55 nm的纳米晶组织。 A gradient and nanostructured(GNS) surface layer was formed on a 316 L stainless steel sample by using surface mechanical rolling treatment(SMRT). The effect of SMRT on the evolution of phase composition and microstructure was studied of the GNS surface layer. The results show that deformation- induced martensite transformation occurs in the surface layer after SMRT, and the martensite amount increases with the increasing penetration depth of SMRT. The microstructural refinement mechanism includes subsequently the formation and interaction of various dislocations, deformation twinning,deformation- induced martensite transformation, and martensite refinement. Finally, nanostructure with mostly martensite and a mean grain size of ca. 55 nm was achieved in the topmost surface layer of the316 L sample.
出处 《材料研究学报》 EI CAS CSCD 北大核心 2016年第1期15-22,共8页 Chinese Journal of Materials Research
基金 国家重点基础研究发展计划资助项目2012CB932201 中国科学院重大突破择优支持项目KGZD-EW-T06 沈阳材料科学国家(联合)实验室资助项目2015RP04~~
关键词 金属材料 纳米材料 表面机械滚压处理 梯度纳米结构 316L不锈钢 形变诱导马氏体相变 metallic materials nanostructured material surface mechanical rolling treatment gradient nanostructure 316L stainless steel deformation-induced martensitic transformation
  • 相关文献

参考文献26

  • 1K. Lu, Making strong nanomaterials ductile with gradients, Sci- ence, 345(6203), I455(2014).
  • 2X. H. Chert, J. Lu, L. Lu, K. Lu, Tensile properties of a nanocrystal- line 316L austenitic stainless steel, Scripta Materialia, 52(10), 1039 (2005).
  • 3T. Roland, D, Retraint, K. Lu, J. Lu, Fatigue life improvement through surface nanostructuring of stainless steel by means of sur- face mechanical attrition treatment, Scripta Materialia, 54(11), 1949 (2006).
  • 4H. T. Wang, N. R. Tao, K. Lu, Architectured surface layer with a gradient nanotwinned structure in a Fe-Mn austenitic steel, Scripta Materialia, 68(1), 22(2013).
  • 5H. W. Huang, Z. B. Wang, X. P. Yong, K. Lu, Enhancing torsion fa- tigue behaviour of a martensitie stainless steel by generating gradi- ent nanograined layer via surface mechanical grinding treatment, Materials Science and Technology, 29(10), 1200(2013).
  • 6F. Lecroisey. A. Pineau, Martensitic Transformations Induced by Plastic-Deformation In Fe-Ni-Cr-C System, Metallurgical Transac- tions, 3(2), 387(1972).
  • 7H. W. Zhang, Z. K. Hei, G. Liu, J. Lu, K. Lu, Formation of nano- structured surhce layer on A1SI 304 stainless steel by means of sur- face mechanical attrition treatment, Acta Materialia, 51(7), 1871 (2003).
  • 8C. X. Huang, G. Yang, Y. L. Gao, S. D. Wu, S. X. Li, Investigation on the nucleation mechanism of deformation-induced martensite in an austenitie stainless steel under severe plastic deformation, Jour-nal of Materials Research, 22(3), 724(2007).
  • 9A. Y. Chen, H. H. Ruan, J. Wang, H. L. Chan, Q. Wang, Q. Li, J. Lu, The influence of strain rate on the microstructure transition of 304 stainless steel, Acta Materialia, 59(9), 3697(2011).
  • 10G. B. Olson, M. Cohen, Kinetics of strain-induced martensitic nu- cleation, Metallurgical Transactions, A6(4), 791(1975).

同被引文献99

引证文献10

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部