期刊文献+

Thermodynamics of general scalar-tensor theory with non-minimally derivative coupling

Thermodynamics of general scalar-tensor theory with non-minimally derivative coupling
原文传递
导出
摘要 With the usual definitions for the entropy and the temperature associated with the apparent horizon, we discuss the first law of the thermodynamics on the apparent in the general scalar-tensor theory of gravity with the kinetic term of the scalar field nonminimally coupling to Einstein tensor. We show the equivalence between the first law of thermodynamics on the apparent horizon and Friedmann equation for the general models, by using a mass-like function which is equal to the Misner-Sharp mass on the apparent horizon. The results further support the universal relationship between the first law of thermodynamics and Friedmann equation. With the usual definitions for the entropy and the temperature associated with the apparent horizon, we discuss the first law of the thermodynamics on the apparent in the general scalar-tensor theory of gravity with the kinetic term of the scalar field nonminimally coupling to Einstein tensor. We show the equivalence between the first law of thermodynamics on the apparent horizon and Friedmann equation for the general models, by using a mass-like function which is equal to the Misner-Sharp mass on the apparent horizon. The results further support the universal relationship between the first law of thermodynamics and Friedmann equation.
出处 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2016年第4期37-41,共5页 中国科学:物理学、力学、天文学(英文版)
基金 supported by the National Natural Science Foundation of China(Grant Nos.11175270 and 11475065) the Program for New Century Excellent Talents in University(Grant No.NCET-12-0205)
关键词 modified gravity thermodynamics derivative coupling cosmology 热力学第一定律 张量理论 任意耦合 标量场 广义 导数 爱因斯坦张量 表面重力
  • 相关文献

参考文献83

  • 1J. D. Bekenstein, Phys. Rev. D 7, 2333 (1973).
  • 2S. Hawking, Commun. Math. Phys. 43, 199 (1975).
  • 3R. M. Wald, Liv. Rev. Rel. 4, 6 (2001).
  • 4J. D. Bekenstein, Phys. Rev. D 23,287 (1981).
  • 5G. 't Hooft, [arXiv:gr-qc/93 10026].
  • 6L. Susskind, J. Math. Phys. 36, 6377 (1995).
  • 7E. Witten, Adv. Yheor. Math. Phys. 2,253 (1998).
  • 8J. M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998).
  • 9R.-G. Cai, L. Li, L.-F. Li, and R.-Q. Yang, Sci. China-Phys. Mech. Astron. 58(6), 060401 (2015).
  • 10J. M. Bardeen, B. Carter, and S. Hawking, Commun. Math. Phys. 31, 161 (1973).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部