期刊文献+

含有色噪声的神经模糊Hammerstein模型分离辨识 被引量:6

Separation identification of neuro-fuzzy Hammerstein model with colored noise
下载PDF
导出
摘要 针对实际工业过程中普遍存在的有色噪声,本文提出一种基于递推增广最小二乘算法的神经模糊Hammerstein模型辨识方法,突破了传统的Hammerstein模型迭代分离算法.首先,利用多信号源实现Hammerstein模型中静态非线性环节和动态线性环节的分离,大大简化了辨识过程,提高了串联环节参数的分离精度.其次,利用长除法将噪声模型用有限脉冲响应模型逼近,采用增广递推最小二乘法进行线性环节的参数估计.最后,采用神经模糊模型拟合静态非线性环节,同时设计了神经模糊模型参数的非迭代优化算法,改善了模型的使用范围.该方法保证了模型的预测精度,对含有色噪声的非线性系统具有较好的拟合效果.仿真结果验证了上述方法的有效性. To deal with the colored noises commonly existing in practical industrial processes, we propose an identi- fication method for neuro-fuzzy Hammerstein model using the recursive extended least squares algorithm (RELS). This method is different from the traditional iterative separation methods for identifying Hammerstein model. Firstly, multiple signal sources are employed to separate the static nonlinear part and the dynamic linear part of the Hammerstein model in order to simplify the identification process and improve the accuracy of the model parameters. Secondly, the finite impulse response model is used to approximate the colored noise model by using the long division method, Then, parameters of the linear part are estimated by using the RELS algorithm. Finally, the neuro-fuzzy model is adopted in identifying the static nonlinear part. Meanwhile, a noniterative neuro-fuzzy optimization algorithm which can be applied to many nonlinear systems is designed. The proposed method can guarantee high precision of the Hammerstein model. Moreover, it has the ability to approximate the nonlinear systems with colored noises. Simulation results show the effectiveness of the proposed method.
作者 方甜莲 贾立
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2016年第1期23-31,共9页 Control Theory & Applications
基金 国家自然科学基金项目(61374044) 上海市教委创新重点项目(14ZZ088) 2013年上海市人才发展基金 上海市宝山区科学技术委员会项目(BKW2013120)资助~~
关键词 非线性系统 HAMMERSTEIN模型 多信号源 增广递推最小二乘算法 神经模糊模型 nonlinear system Hammerstein model multi-signal sources recursive extended least squares algorithm neuro-fuzzy model
  • 相关文献

参考文献23

  • 1LIU Y,BAI E W.Iterative identification of Hammerstein systems[J].Automatica,2007,43(2):346-354.
  • 2桂卫华,宋海鹰,阳春华.Hammerstein-Wiener模型最小二乘向量机辨识及其应用[J].控制理论与应用,2008,25(3):393-397. 被引量:19
  • 3MARZBAN H R,TABRIZIDOOZ H R,RAZZAGHI M.A composite collocation method for the nonlinear mixed Volterra-Fredholm-Hammerstein integral equations[J].Communications in Nonlinear Science Numerical Simulation,2011,16(3):1186-1194.
  • 4CHEN H T,HWANG S H,CHANG C T.Iterative identification of continuous-time Hammerstein and Wiener systems using a two-stage estimation algorithm[J].Industrial & Engineering Chemistry Research,2009,48(3):1495-1510.
  • 5王峰,邢科义,徐小平.辨识Hammerstein模型方法研究[J].系统仿真学报,2011,23(6):1090-1092. 被引量:15
  • 6丁锋,刘景璠,肖永松.一类非线性系统的参数估计[J].控制工程,2011,18(3):373-376. 被引量:6
  • 7DING F,CHEN T W.Identification of Hammerstein nonlinear ARMAX systems[J].Automatica,2005,41(9):1479-1489.
  • 8G(O)MEZ J C,BAEYENS E.Subspace-based identification algorithms for Hammerstein and Wiener models[J].European Journal of Control,2005,11(2):127-136.
  • 9BAI E W,LID.Convergence of the iterative Hammerstein system identification algorithm[J].IEEE Transactions on Automatic Control,2004,49(11):1929-1940.
  • 10NARENDRA K S,GALLMAN P G.An iterative method for the identification of nonlinear systems using a Hammerstein model[J].IEEE Transactions on Automatic Control,1966,11 (3):546-550.

二级参考文献69

共引文献78

同被引文献52

引证文献6

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部