期刊文献+

目标约束融合的约束多目标免疫算法及性能评价准则 被引量:2

A constrained multi-objective immune algorithm based on objective and constraint fusion and performance evaluation metric
下载PDF
导出
摘要 免疫算法求解约束多目标优化问题时,如何设计抗体的亲和力,以及如何保持或提高种群的多样性为算法设计的关键.本文基于免疫系统的固有免疫和自适应免疫交互运行模式,提出目标约束融合的并行约束多目标免疫算法(parallel constrained multiobjective immune algorithm,PCMIOA).利用支配度和浓度设计抗体的亲和力,提出了目标约束融合的评价方法,增强了算法的收敛性.借助基因重组中DNA片段的转移机制,设计一种转移(transformation)算子,提高了种群的多样性.针对已有性能评价准则存在的不足给出一种改进的支配范围评价准则.数值实验选用12个约束二目标和4个非约束三目标测试函数验证PCMIOA的优化性能,并将其与3种著名的约束多目标算法和5种非约束多目标算法进行比较.结果表明:PCMIOA具有较强的优化性能.与其他算法相比,PCMIOA所获的Pareto最优前沿能较好的逼近真实Pareto最优前沿,且分布较均匀. How to design the affinity of an antibody and to maintain or improve the population diversity has always been a key problem, when an immune algorithm is applied to solve constrained multi-objective optimization problems (CMOPs). To solve this problem, we propose a parallel constrained multi-objective immune algorithm (PCMIOA) by merging objectives and constraints, based on the interactive operation of innate immune and adaptive immune in the immune system. In this algorithm, we define the affinity of an antibody by using the domination degree and density, and develop an evaluation approach for assembled objectives and constraints, which accelerates the convergence of PCMIOA. In addition, a transformation mechanism that occurs in the recombination process of DNA segment is presented to improve the population diversity. An improved domination scope metric is developed in order to overcome the disadvantages of the existing ones. PCMIOA is applied to solve a set of twelve two-objective CMOPs and four unconstrained three-objective test problems. The experimental results indicate that PCMIOA is able to achieve a superior performance. The Pareto-optimal front obtained by PCMIOA very well approximates the true Pareto-optimal front and exhibits a well-spread when compared to three modern constrained multi-objective algorithms and five unconstrained multi-objective algorithms.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2016年第1期113-127,共15页 Control Theory & Applications
基金 国家自然科学基金项目(61304146 61473145) 贵州省科技计划基金项目(20152002) 贵州教育厅优秀科技创新人才奖励计划项目(2014255)资助~~
关键词 约束多目标 免疫优化 亲和力 性能准则 转移算子 constrained multiobjective immune optimization affinity performance metric transformation operator
  • 相关文献

参考文献29

  • 1林浒,彭勇.面向多目标优化的适应度共享免疫克隆算法[J].控制理论与应用,2011,28(2):206-214. 被引量:11
  • 2LI H,ZHANG Q F.Multiobjective optimization problems with complicated Pareto sets,MOEA/D and NSGA-II[J].IEEE Transactions on Evolutionary Computation,2009,13(2):284-302.
  • 3DAI C,WANG Y.A new multiobjective evolutionary algorithm based on decomposition of the objective space for multiobjective optimization[J].Journal of Applied Mathematics,2014,2014(2):99-121.
  • 4GIAGKIOZIS I,PURSHOUSE R C,FLEMING P J.An overview of population-based algorithms for multi-objective optimization[J].International Journal of Systems Science,2015,46(9):1572-1599.
  • 5叶洪涛,罗飞,许玉格.解决多目标优化问题的差分进化算法研究进展(英文)[J].控制理论与应用,2013,30(7):922-928. 被引量:17
  • 6PERALTA R C,FORGHANI A,FAYAD H.Multiobjective genetic algorithm conjunctive use optimization for production,cost,and energy with dynamic return flow[J].Journal of Hydrology,2014,511(4):776-785.
  • 7BERROCAL-PLAZA V,VEGA-RODR(I)GUEZ M A,S(A)NCHEZP(E)REZ J M.On the use of multiobjective optimization for solving the Location Areas strategy with different paging procedures in a realistic mobile network[J].Applied Soft Computing,2014,18(1):146-157.
  • 8牛大鹏,王福利,何大阔,贾明兴.基于改进多目标差分进化算法的诺西肽发酵过程优化[J].控制理论与应用,2010,27(4):505-508. 被引量:5
  • 9DASHORA A,LOHANI B,DEB K.Solving flight planning problem for airborne LiDAR data acquisition using single and multi-objective genetic algorithms[R].India:KanGAL,2013.
  • 10MARTINEZ S Z,COELLO C A C.A multi-objective evolutionary algorithm based on decomposition for constrained multi-objective optimization[C]//2014 IEEE Congress on Evolutionary Computation.Beijing,China:IEEE,2014:429-436.

二级参考文献90

  • 1颜学峰,余娟,钱锋.自适应变异差分进化算法估计软测量参数[J].控制理论与应用,2006,23(5):744-748. 被引量:24
  • 2贺益君,俞欢军,成飙,陈德钊.多目标粒子群算法用于补料分批生化反应器动态多目标优化[J].化工学报,2007,58(5):1262-1270. 被引量:17
  • 3黄敏,陈国龙,郭文忠.基于表现型共享的多目标粒子群算法研究[J].福州大学学报(自然科学版),2007,35(3):365-369. 被引量:5
  • 4SRINIVAS N,DEB K.Multiobjective optimization using nondom-inated sorting in genetic algorithms[J].Evolutionary Computation,1994,2(3):221-248.
  • 5DEB K,PRATAP A,AGARWAL S,et al.A fast and elitist multiobjective genetic algorithm:NSGA-II[J].IEEE Transactions on Evolutionary Computation,2002,6(2):182-197.
  • 6ZITZLER E,THIELE L.Multiobjective evolutionary algorithms:A comparative case study and the strength Pareto approach[J].IEEE Transactions on Evolutionary Computation,1999,3(4):257-271.
  • 7RAINER S,PRICE K.Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces[J].Journal of Global Optimization,1997,11(4):341-359.
  • 8MADAVAN N K.Multiobjective optimization using a pareto differential evolution approach[C] //Congress on Evolutionary Computation (CEC 2002).Piscataway,New Jersey:IEEE Service Center,2002(2):1145-1150.
  • 9ROBIC T,FILIPIC B.DEMO:Differential evolution for multiobjective optimization[C] //Lecture Notes in Computer Science.Berlin:Springer,2005:520-533.
  • 10COELHO L S,MARIANI V C.Combining of chaotic differential evolution and quadratic programming for economic dispatch optimization with valve-point effect[J].IEEE Transactions on Power Systems,2006,21(2):989-996.

共引文献30

同被引文献15

引证文献2

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部