期刊文献+

一类离散时间非齐次马尔可夫跳跃系统最优控制 被引量:3

Optimal control for a class of discrete-time nonhomogeneous Markovian jump linear systems
下载PDF
导出
摘要 本文研究了一类离散时间非齐次马尔可夫跳跃线性系统的线型二次高斯(linear quadratic Gaussian,LQG)问题,其中系统模态转移概率矩阵随时间随机变化,其变化特性由一高阶马尔可夫链描述.对于该系统的LQG问题,文中首先给出了线性最优滤波器,得到最优状态估计;其次,验证分离定理成立,并利用利用动态规划方法设计了系统最优控制器;最后,数值仿真结果验证了所设计控制器的有效性. This paper concerns the linear quadratic Gaussian (LQG) problem for a class of discrete-time nonhomoge- neous Markovian jump linear systems (MJLSs) in the presence of process and observation noises. In such nonhomogeneous MJLSs, the mode transition probability matrix (MTPM) varies randomly instead of being time-invariant. Assuming that the stochastic variation of MTPM is governed by a high level Markov chain, we propose an MJLS model with two-level Markov chains to describe the concerned characteristics. Firstly, a mode-MTPM based optimal filter is developed to es- timate system states where the filter gain can be obtained from the coupled Riccati equations. Furthermore, we prove in details the validity of separation principle for such MJLSs. On this basis, we design the optimal output feedback controller by applying the dynamic programming method. Finally a numerical example is given to show the effectiveness of the developed theoretical results.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2016年第1期128-132,共5页 Control Theory & Applications
基金 国家自然科学基金项目(61374073) 中央高校基本科研业务费专项资金(WK2100000003) 安徽省自然科学基金项目(1308085QF107)资助~~
关键词 随机系统 非齐次马尔可夫链 最优控制 分离定理 stochastic systems nonhomogeneous Markov chains optimal control separation principle
  • 相关文献

参考文献12

  • 1DRAGAN V,MOROZAN T.Mathematical Methods in Robust Control of Linear Stochastic Systems[M].New York:Springer,2006.
  • 2JI Y,CHIZECK H J.Controllability,stabilizability,and continuoustime Markovian jump linear quadratic control[J].IEEE Transactions on Automatic Control,1990,35(7):777-788.
  • 3MITROPHANOV A Y.Stability and exponential convergence of continuous-time Markov chains[J].Journal of Applied Probability,2003,40(4):970-979.
  • 4SHEN M,YANG G H.H2 filter design for discrete-time Markov jump linear systems with partly unknown transition probabilities[J].Optimal ControlApplications & Methods,2012,33(3):318-337.
  • 5方洋旺,王洪强,伍友利.具有条件马尔科夫结构的离散随机系统最优控制[J].控制理论与应用,2010,27(1):99-102. 被引量:7
  • 6LI H Y,GAO H J,SHI P,et al.Fault-tolerant control of Markovian jump stochastic systems via the augmented sliding mode observer approach[J].Automatica,2014,50(7):1825-1834.
  • 7YIN Y Y,SHI P,LIU F,et al.Robust control for nonhomogeneous Markov jump processes:An application to DC motor device[J].Journal of the Franklin Institute-Engineering and Applied Mathematics,2014,351(6):3322-3338.
  • 8ZHU J,WANG L P,SPIRYAGIN M.Control and decision strategy for a class of Markovian jump systems in failure prone manufacturing process[J].IET Control Theory and Applications,2012,6(12):1803-1811.
  • 9ABERKANE S.Stochastic stabilization of a class of nonhomogeneous Markovian jump linear systems[J].Systems & Control Letters,2011,60(3):156-160.
  • 10YIN Y,SHI P,LIU F,et al.Observer-based H-infinity control on nonhomogeneous Markov jump systems with nonlinear input[J].International Journal of Robust and Nonlinear Control,2014,24(13):1903-1924.

二级参考文献11

  • 1方洋旺.随机系统分析与应用[M].西安:西北工业大学出版社,2006.
  • 2COSTA O L V, FRAGOSO M D, MARQUES R P. Discrete Time Markov Jump Linear Systems[M]. London: Springer-Verlag, 2005: 52-78.
  • 3GRAY W S, GONZALEZ O R, DOGAN M. Stability analysis of digital linear flight controllers subject to electromagnetic disturbance[J]. IEEE Transactions on Aerospace and Electronic systems, 2000, 36(4): 1204- 1218.
  • 4DO VAL J B R, COSTA E E Numerical solution for linear-quadratic control problems of Markov jump linear system and weak detectablility concept[J]. Journal of Optimization Theory and Applications, 2002, 114(1): 69 - 96.
  • 5STOICA A, YAESH I. Jump Markovian-based control of wing deployment for an uncrewed air vehicle[J]. Journal of Guidance, 2002, 25(2): 407 - 411.
  • 6BOUKAS E K, LIU Z K. Robust H∞-control of discrete-time Markovian jump linear systems with mode-dependent time-delays[J]. IEEE Transactions on Automatic Control, 2001,46(12): 1918 - 1924.
  • 7PARK B, KWON W H. Robust one-step receding horizon control of discrete-time Markovian jump uncertain systems[J]. Automatica, 2002, 38(7): 1229- 1235.
  • 8MAGDI S M, SHIP. Robust control for Markovian jump linear discrete-time systems with unknown nonlinearities[J]. IEEE Transactions on Circuits and Systems, 2002, 49(4): 538 - 542.
  • 9SHI P, XIA Y Q, LIU G P, et al. On designing of sliding-mode control for stochastic jump systems[J]. IEEE Transactions on Automatic Control, 2006, 51(1): 97 - 105.
  • 10BUKHALOV B A. Optimization smoothing in systems with random jump-like structure[J]. Automatization and Telecontrol, 1996, 4:56 - 63.

共引文献6

同被引文献16

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部