期刊文献+

夹角型超声变幅杆的矩阵解析法 被引量:4

On matrix analytical method of angled ultrasonic longitudinal solid horn
原文传递
导出
摘要 对新型的夹角型超声变幅杆的设计方法进行研究,借鉴传输矩阵法的思想利用一维振动理论推导了均匀杆两端界面各矢量间关系的特性矩阵,结合变幅杆连接处位移、力、转角和力矩的连续条件得到了夹角型超声变幅杆谐振频率的矩阵解析法.计算了不同尺寸变幅杆的谐振频率,计算结果与实验测试结果相一致. The engineering method of the new type angled ultrasonic longitudinal solid horn has been investigated in this paper.At first,the characteristic matrix of the relationship between the vectors on the input and output ends of the straight rod has been calculated.Then,the coupling relationship of the displacements,forces,bending moments and angles of rotation at the junction of the input and output rods has been obtained. At last,the matrix analytical method,which has been used to calculate the resonant frequency,has been presented based on the characteristic matrix and coupling relationship.The resonant frequencies of the angled solid horns with different geometrical dimensions have been calculated and basically agree with the values by experiment.This method,featuring clear physical concept and convenient calculation,can serve as reference for the design of the angled ultrasonic longitudinal solid horn.
出处 《云南大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第2期225-231,共7页 Journal of Yunnan University(Natural Sciences Edition)
基金 国家自然科学基金(11374201)
关键词 变幅杆 矩阵 频率方程 angle solid horn matrix frequency equation
  • 相关文献

参考文献14

  • 1WEBSTER A G.Acoustical impedance, and the theory of horns and of the phonograph [ J ] .Proceedings of the National Acade- my of Sciences of the United States of America, 1919,5 (7) :275-282.
  • 2SALMON V.Generalized Plane Wave Horn Theory[ J] .Journal of the Acoustical Society of America, 1946,17(3) :473.
  • 3WANG D A, CHUANG W Y, HSU K, et al.Design of a Brzier-profile horn for high displacement amplification [ J ] .Uhrason- ics,2011,51(51) :148-156.
  • 4HUU-TU N, Hal-Dang N ,Jun-Yen U, et al.A nonrational B-spline profiled horn with high displacement amplification for ul- trasonic welding[ J] .Uhrasonics,2014,54(8) :2 063-2 071.
  • 5赵福令,冯冬菊,郭东明,方亚英.超声变幅杆的四端网络法设计[J].声学学报,2002,27(6):554-558. 被引量:64
  • 6LESNIEWSKI P.Discrete component equivalent circuit for webster's horns[ J] .Applied Acoustics, 1995,44(2) :117-124.
  • 7贺西平,程存弟,贺昇平.超声扭振系统的四端网络设计法[J].应用声学,1994,13(3):33-36. 被引量:13
  • 8高洁,贺西平,胡静.四端网络法统一变幅杆的性能参量[J].声学技术,2006,25(1):87-89. 被引量:13
  • 9清华大学工程力学系固体力学教研组.机械振动[M].北京:机械工业出版社,1980.
  • 10THOMSON W T, DAHLEH M D.Theory of vibration with applications [ M ] .Sth ed.London: Prentice Hall, 1998.

二级参考文献37

  • 1贺西平,程存弟.几种常见形状函数超声变幅杆性能参量的统一表达[J].陕西师大学报(自然科学版),1994,22(3):29-32. 被引量:29
  • 2Peter Lesniewski. Discrete component equivalent circuit for webster's horns[J]. Applied Acoustics, 1995, 44:117-124.
  • 3Gupta A K. Vibration of tapered beams [ J ]. Journal of Structural Engineering, 1985, 111 (1): 19-36.
  • 4Naguleswaran S. Vibration in the two principal planes of a non-uniform beam of rectangular cross-section one side of which varies as the square root of the axial co-ordinate [J]. Journal of Sound and Vibration, 1994, 172:305 -319.
  • 5Laura P A, Gutierrez R H. Rossi R E. Free vibration of beams of bi-linearly varying thickness [ J ]. Ocean Engineering,1996, 23 (1): 1-6.
  • 6Caruntu D. On nonlinear vibration of non-uniform beam with rectangular cross-section and parabolic thickness variation [ M ]. Solid Mechanics and its Applications. Kluwer Academic Publishers, Dordrecht, Boston, London, 2000: 109 - 118.
  • 7Mehmet C E, Metin A, Vedat T. Vibration of a variable cross-section beam [ J ]. Mechanics Research Communications, 2007, 34 : 78 - 84.
  • 8Elishakoff I. Eigenvalues of inhomogeneous structures: unusual closed-form solutions [ M ]. Boca Raton:CRC Press, 2005.
  • 9Mao Q B, Pietrzko S. Free vibration analysis of stepped beams by using Adomian decomposition method [ J ]. Applied Mathematics and Computation, 2010,217:3429 - 3441.
  • 10Mao Q B. Free vibration analysis of multiple-stepped beams by using Adomian decomposition method [J]. Mathematical and Computer Modelling, 2011,54:756 - 764.

共引文献154

同被引文献29

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部