期刊文献+

医疗费用预测的贝叶斯多项式混合效应模型 被引量:4

Bayesian Polynomial Mixed-effects Models for Predicting Medical Expenses
下载PDF
导出
摘要 医疗费用预测是健康保险费率厘定的前提和基础。对于多年期的医疗费用数据,通常使用线性混合效应模型对其进行拟合,但线性混合效应模型对非线性关系的纵向数据建模具有一定的局限性。本文对线性混合效应模型进行扩展,根据医疗费用数据中变量之间的非线性关系,建立了多项式混合效应模型,并将其应用于一组医疗费用数据进行实证研究。结果表明,多项式混合效应模型对住院医疗费用的拟合效果显著优于通常使用的线性混合模型,在医疗费用管理和健康保险的费率厘定中具有重要的应用价值。 Prediction of medical expenses is the precondition and basis for health insurance premium ratemaking. Linear mixed-effects models are often used to fit multi-year medical cost data, but for longitudinal data with nonlinear relationship between response variable and covariate variables, the linear mixed-effects models have certain limitations. In this paper, based on the medical cost data with non-linear relationships, the linear mixed-effects models are extended to establish polynomial mixed-effects models, and the models are applied to a set of actual medical expense data for empirical research. The result shows that the polynomial mixed-effects models can fit medical expense better than linear mixed-effects models. The method proposed in the paper is valuable for practical medical expense management and health insurance ratemaking.
出处 《统计研究》 CSSCI 北大核心 2016年第2期75-78,共4页 Statistical Research
基金 国家自然科学基金项目"考虑风险相依的非寿险精算模型研究"(71171193) 教育部重点研究基地重大项目"随机效应模型及其在非寿险风险管理中的应用"(12JJD790025)的资助
关键词 线性混合效应模型 多项式混合效应模型 健康保险 医疗费用 Linear Mixed-effects Model Polynomial Mixed-effects Model Health Insurance Medical Expense
  • 相关文献

参考文献9

  • 1Frees E W, Young V R, Luo Y. Case Studies Using Panel Data Models [ J ]. North American Actuarial Journal 2001 (4) : 24 - 42.
  • 2Klein N, Denuit M, Stefan L, et al. Nnnlife ratemaking and risk management with Bayesian generalized additive models for location, scale, and shape [ J ]. Insurance : Mathematics and Economics 2014 (55) : 225 -249.
  • 3Brezger A, Lang S. Generalized structured additive regression based on Bayesian P-splines[ J]. Computational Statistics & Data Analysis 2006(50) : 967 -991.
  • 4Jullion A, Lambert P. Robust specification of" the roughness penalty prior distribution in spatially adaptive Bayesian P-splines models [ J]. Computational Statistics & Data Analysis 2007 (51) : 2542 - 2558.
  • 5Fahrmeir L, Kneib T, Lang S, et al. Regression-Models, Methods and Applications[ M]. New York: Springer. 2013.
  • 6Lang S, Umlauf N, Wechselberger P, et al. Multilevel structured additive regression [ J ]. Statistics and Computing 2014 (24) : 223 - 238.
  • 7Gelman A, Rubin D. Inference from Iterative Simulation Using Multiple Sequences[ J ]. Statistical Science, 1992 (7) : 457 - 511.
  • 8Spiegelhalter D J, Best N G, Carlin B P, et al. Bayesian Measures of Model Complexity and Fit (with Discussion) [J]. Journal of the Royal Statistical Society ( B ) , 2002 (64) : 583 - 639.
  • 9Spiegelhaher D J, Best N G, Carlin B P, et al. The deviance information criterion: 12 years on [ J ]. Journal of the Royal Statistical Society(B) , 2014(76) : 486 -496.

同被引文献34

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部