期刊文献+

索-梁耦合结构Hopf分岔的反控制 被引量:6

Anti-Control of Hopf Bifurcations of Cable-Stayed Beam
原文传递
导出
摘要 论文研究了索-梁耦合结构的Hopf分岔的反控制,动态窗口滤波反馈控制器在反控制领域有着很广泛的应用.论文通过使用这种控制器,可以使得受控系统在指定的平衡点处产生Hopf分岔.最后,根据庞加莱截面和级数展开法,证明了上述方法的有效性及可行性. In recent years, there has been increasing interest in bifurcation control. Anti-control of bi furcation, as opposed to the bifurcation control, which means to design a controller to reduce some of the existing bifurcation dynamics of a given nonlinear system, refers to a task of creating a certain bifurcation at a desired location with preferred properties by appropriate controls. In this study, the anti-control of Hopf bifurcations was investigated. A Hopf bifurcation was introduced at a designed stable equilibrium point, followed by employing a washout-filter-aided controller. The effectiveness and feasibility of using the washout-filter-aided controller to obtain a certain Hopf bifurcation at the desired location were proved based on the Poincare map and expansion method of power series. By defining a mapping, the (2 + 1)-di- mensional system was created, in which the Poincare section could be suitably selected. The number of fixed points was then determined by using the second derivative of the function. In addition, the fixed points were solved using the Poincare map. The parameters of feedback controller were modified to keep the locations of equilibrium points fixed. Then, by using the washout filter-aided dynamic feedback con troller, a Hopf bifurcation was created at the desired location with preferable properties. According to the calculation of Poincare map, there existed at most one fixed point in the system. The equilibrium point co incided with the fixed point of the system designed to operate with the use of washout-filter-aided dynamic feedback controller. The periodic solution near the bifurcation point could also be obtained using the Poin care map. Based on the Poincare map theory, a Hopf bifurcation could be created at a desired location with preferred properties using the dynamic feedback controller. The finding can trigger further studies on ap- plications of the anti-control of bifurcations.
出处 《固体力学学报》 CAS CSCD 北大核心 2016年第1期90-94,共5页 Chinese Journal of Solid Mechanics
基金 国家自然科学基金项目(11372102 11172093)资助
关键词 分岔反控制 庞加莱截面 反馈控制器 anti-controlling bifurcation,poincare section,feedback controller
  • 相关文献

参考文献7

  • 1Kang Z,Xu K S,Luo Z. A numerical study on nonlin- ear vibration of an inclined cable coupled with the deck in Cable-stayed bridges[J]. Journal of Vibration and Control, 2012,18(3) :404-416.
  • 2陈水生,孙炳楠.斜拉桥索-桥耦合非线性参数振动数值研究[J].土木工程学报,2003,36(4):70-75. 被引量:56
  • 3赵跃宇,蒋丽忠,王连华,刘光栋,易伟建.索-梁组合结构的动力学建模理论及其内共振分析[J].土木工程学报,2004,37(3):69-72. 被引量:39
  • 4王志搴,赵珧冰,孙测世,康厚军.索-梁组合结构的建模及面内动力特性分析[J].固体力学学报,2014,35(3):308-312. 被引量:10
  • 5Gattulli V, Morandini M, Paolone A. A parametric an- alytical model for non-linear dynamics in cable-stayed beam[J]. Earthquake Engineering and Structural Dy- namics. 2002,31(6) :1281 1300.
  • 6Chen D S, Wang H O, Chen G R. Anti-Control of Hopf Bifurcations[C]. IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applica- tions,2001,48(6) :661 672.
  • 7Cheng Z S. Anti-control of Hopf bifurcation for Chen s system through washout filters[J]. Neurocomput ing,2010,73:3139 3146.

二级参考文献27

  • 1汪至刚.大跨度斜拉桥拉索的振动与控制[D].杭 州:浙江大学,2000.
  • 2A H 奈克 D T 穆克.非线性振动[M].北京:高等教育出版社,1996..
  • 3J. L. Lilien, A. Pinto Da Costa. Vibration amplitudes caused by parametric excitation of cable stayed structures[J]. Journal of Sound and vibration 174 (2) 69 - 90,1994.
  • 4Chris Geurts, Ton Vrouwenvelder, Piet van Staalduien, Jaco Reusink (Netherlands). Numerical modelling of rain-windinduced vibration: Erasmus Bridge, Rotterdam [J]. Structural Engineering International, 1998.
  • 5A. Pinto Da Costa, J. A. C. Martins, et al. Oscillations of bridge stay cables induced by periodic motions of deck and/ or towers [J]. Journal of Enginecring Mechanics, 122 (7), 1996.
  • 6Michel Virlogeux (France). Cable vibration in cable-stayed bridges [J]. Bridge Dynamic 213 - 233, 1998.
  • 7H. Max Irvine. Cable Structure [M]. The MIT Press, 1981.
  • 8S. I. Al-Noury, S. A. Ali. Large-amplitude vibrations of parabolic cables [J]. Journal of Sound and Vibration, 101 (4), 451-462, 1985.
  • 9G. Tagata. Harmonically Forced, Finite Amplitude Vibration of A String [J]. Journal of Sound and Vibration, 51 (4), 483-492, 1977.
  • 10G. Visweswara Rao, R. N. Iyengar. Internal resonance and non-linear response of a cable under periodic excitation [J].Journal of Sound and Vibration, 149 (1), 25-41. 1991.

共引文献84

同被引文献26

引证文献6

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部