期刊文献+

与低秩纠错编码相结合的多变量加密方案

New multivariate encryption scheme with low rank error-correcting codes
原文传递
导出
摘要 为了探索构造多变量核心映射的新方法,在cubic simple matrix方案基础上,设计了一种利用秩矩阵码的方法来改进原方案的核心映射.主要在隐藏核心映射的相应变换上进行了改进,以低秩奇偶校验(LRPC)码中的校验矩阵设计核心映射,对原方案的核心映射作了一个变换.然后,根据用户身份选定错误向量,作为扰动部分添加到核心映射中,重新构造出了新的核心映射,提出了一种基于LRPC码的多变量加密方案.通过分析可知:新方案的安全性可以归约到求解多变量二次多项式问题和秩最大似然译码问题;在效率上,与原方案相比,密钥量增加不大,但密文扩展率降低了50%. In order to explore the new way to construct multivariate core mapping,a method was designed by using rank matrix code to improve the original scheme′s core mapping,which based on the cubic simple matrix scheme.The main work was to improve the corresponding transformation of hiding core mapping,which used the check matrix of low rank parity check codes to design the core mapping and made a transformation for the original scheme′s core mapping.Furthermore,an error vector was selected according to users′identity,which was added to the core map as a perturbation.Then a multivariate encryption scheme based on low rank parity check(LRPC)codes was proposed after reconstructing the new core mapping.Finally,through the analysis,it can be seen that the security of the new scheme can be reduced to the problems of solving multivariate quadratic(MQ)equations as well as rank syndrome decoding(RSD),which increases the scheme′s security.In terms of efficiency,the ciphertext extension rate of the new scheme is reduced by 50% compared with the original one without increasing a lot of key sizes.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2016年第3期71-76,共6页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(61572521 61272486) 陕西省自然科学基础研究计划资助项目(2015JM6353) 中国博士后科学基金资助项目(2014M562445 2015T81047) 武警工程大学基础研究基金资助项目(WJY201521)
关键词 密码学 多变量公钥密码 纠错编码 核心映射 可证明安全 cryptography multivariate public key cryptography coding cryptography central map provable security
  • 相关文献

参考文献13

  • 1Barreto P, Biasi F, Dahab R, et al. A panorama of post-quantum cryptography [ M]. Berlin: Springer- Verlag, 2014.
  • 2Matsumoto T, Imai H. Public quadratic polynomial tuples for efficient signature verification and message encryption[C]//Proc of Advances in Cryptology-- EUROCRYPT. Berlin: Springer-Verlag, 1988: 419- 453.
  • 3Tao C, Diene A, Tang S, et al. Simple matrix scheme for encryption[-M]. Berlin: Springer-Verlag, 2013.
  • 4Tao C, Xiang H, Petzoldt A, et al. Simple matrix, a multivariate public key cryptosystem (MPKC) for en- cryptionl-J]. Finite Fields and Their Applications, 2015, 35: 352-368.
  • 5Yasuda T, Takagi T, Sakurai K. Multivariate signa- ture scheme using quadratic forms[J]. Post-Quantum Cryptography, 2013, 7932: 243-258.
  • 6Ding J, Petzoldt A, Wang L. The cubic simple ma- trix encryption scheme~M]. Berlin: Springer-Verlag, 2014.
  • 7Porras J, Baena J, Ding J. ZHFE: a new multivariatepublic key encryption scheme[C] //Proc of Post- Quantum Cryptography. Berlin: Springer-Verlag, 2014: 229-245.
  • 8王后珍,沈昌祥,徐正全,张焕国.Multivariate Public-Key Encryption Scheme Based on Error Correcting Codes[J].China Communications,2011,8(4):23-31. 被引量:4
  • 9Niederreiter H. Knapsack-type cryptosystems and al- gebraic coding theory[-J~. Problems of Control and Information Theory Problem, 1986, 15(2)= 159-166.
  • 10Gaborit P, Ruatta O, Schrek J, et aI. New results for rank based cryptographyEM]. Berlin: Springer,2014.

二级参考文献24

  • 1YANG B,CHEN J,COURTOIS N.On Asymptotic Security Estimates in XL and Grbner Bases-related Algebraic Cryptanalysis. Proceedings of the 6th International Conference on Information and Communications Security: October 27-29,2004 . 2004
  • 2CLOUGH C,,BAENA J,DING J T,et al.Square,a New Multivariate Encryption Scheme. Proceedings of the Cryptographers’’ Track at the RSA Conference: April 20-24, 2009 . 2009
  • 3CHEN A,CHEN C,CHEN M,et al.Practical-sized In- stances of Multivariate PKCs: Rainbow,TTS,and  IC-De- rivatives. Proceedings of the 2nd International Workshop on Post-Quantum Cryptography: October 17-19,2008 . 2008
  • 4COURTOIS N,FINIASZ M,SENDRIER N.How to Achieve a Mceliece-Based Digital Signature Scheme. Proceed- ings of the 7th International Conference on the Theory and Ap- plication of Cryptology and Information Security: December 9- 13,2001 . 2001
  • 5DING J,GOWER J.Inoculating Multivariate Schemes A- gainst Differential Attacks[C]/. Proceedings of the 9th Inter- national Conference on Theory and Practice in Public Key Cryptography: April 24-26,2006 . 2006
  • 6FAUGRE J.A New Efficient Algorithm for Computing Grob- ner Bases Without Reduction to Zero ( F5). Proceed- ings of the 2002 International Symposium on Symbolic and Al- gebraic Computation: July 7-10,2002 . 2002
  • 7LEE P,BRICKELL E.An Observation on the Security of Mceliece’’s Public Key Cryptosystem. Proceedings of the 1988 Workshop on the Theory and Application of Crypto- graphic Techniques: May 25-27,1988 . 1989
  • 8PATARIN J.Cryptanalysis of the Matsumoto and Imai Public Key Scheme of Eurocrypt 1988. Proceed- ings of the 15th Annual International Cryptology Confer- ence: August 27-31,1995 . 1995
  • 9PATARIN J.Hidden Field Equations ( HFE) and Iso- morphisms of Polynomials ( IP) : Two New Families of Asymmetric Algorithms. Proceedings of the 1996 International Conference on the Theory and Application of Cryptographic Techniques: May 12-16,1996 . 1996
  • 10SHAMIR A.Efficient Signature Schemes Based on Bira- tional Permutations. Proceedings of the 13th Annual International Cryptology Conference: August 22-26, 1993 . 1993

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部