期刊文献+

Hilbert空间连续K-框架的冗余与扰动性 被引量:2

Excess and perturbation of continuous K- frames in Hilbert spaces
原文传递
导出
摘要 基于连续K-框架的定义,给出了Hilbert空间连续K-框架的两个等价刻画.在连续K-框架中挖去部分元素还构成连续K-框架的两个充分条件和不构成连续K-框架的一个充分条件,利用合成算子和两个连续Bessel映射的有界线性算子SF,G去刻画连续K-框架.最后讨论Hilbert空间连续K-框架的扰动. Based on the definition of the continuous K - frames, we propose two kinds of equivalent characterizations for continuous K- frames. We also give two sufficient conditions for the remainder of a continuous K- frame after deleting some elements to be a continuous K -frame and a sufficient con- dition for the remainder to be not a continuous K- frame. We characterize the continuous K- frames by the synthesis operator and a bounder operator SF,G associated with two continuous Bessel mappings. Finally, we discuss the perturbation of continuous K - frames in Hilbert spaces.
出处 《福州大学学报(自然科学版)》 CAS 北大核心 2016年第1期6-11,共6页 Journal of Fuzhou University(Natural Science Edition)
基金 福建省自然科学基金资助项目(2012J01005) 国家自然科学基金数学天元基金资助项目(11226099) 福州大学科技发展基金资助项目(2012-XQ-29)
关键词 连续K-框架 HILBERT空间 冗余 扰动 continuous K - frame Hilbert spaces excess perturbation
  • 相关文献

参考文献15

  • 1Duffin R J, Schaeffer A C. A class of nonharmonic Fourier series[J]. Trans. Math. Soc., 1952, 72: 341-366.
  • 2DUFFIN R J, SCHAEFFER A C. A class of nonharmonic Fourier series[ J]. Transactions of the American Mathematical Socie- ty, 1952,72(2): 341-366.
  • 3KOVACEVIC J, CHEBIRA A. An Introduction to frames[J]. Foundations and Trends in Signal Processing, 2008, 2( 1 ) : 1 -94.
  • 4ALI S T, ANTOINE J P, GAZEAU J P. Coherent states, wavelets and their generalizations [ M ]. New York : Spring - Verlag, 2000.
  • 5ALI S T, ANTOINE J P, GAZEAU J P. Continuous ~frames in Hilbert spaces[J] . Annal of.Physics, 1993, 222( 1 ) : 1 -37.
  • 6ASKARI -HEMMAT A, DEHGAN M A, RSDJABALIpOUR M. Generalized frames and their redundancy[ J ]. Proceedings of the American Mathematical Society, 2001, 129(4) : 1 143- 1 147.
  • 7GABARDO J P, HAND. Frames associated with measurable spaces [J]. Advances in Computational Mathematics, 2003, 18 (2/4) : 127 - 147.
  • 8FORNASIER M, RAUHUT H. Continuous frames, function spaces, and the discretization problem [ J ]. Journal of Fourier Anal- ysis and Applications, 2005, 11 (3) : 245 - 287.
  • 9RAHIMI A, NAJATI A, DEHGHAN Y N. Continuous frames in Hilbert spaces[ J]. Methods of Functional Analysis and Topoi- ogy, 2006, 12(2) : 170-182.
  • 10AZHIMI A, BEHESHTI M. Some resuhs on continuous frames for Hilbert spaces [ J ]. International Journal of Industrial Math- ematics, 2010, 2( 1): 37-42.

二级参考文献12

  • 1Duffin R. J., Schaeffer A. C., A class of nonharmonic Fourier series, Trans. Math. Soc., 1952, 72:341-366.
  • 2Daubechies I., Grossmann A., Meyer Y., Painless nonorthogonal expansions, J. Math. Phys., 1986, 27(1) 271-1283.
  • 3Casazza P. C., The art of frame theory, Taiwan Residents J. of Math., 2000, 4(2): 129-201.
  • 4Christensen O., An Introduction to Frames and Riesz Bases, Birkhuser, Boston, 2003.
  • 5Candes E. J., Donoho D. piecewise C2 singularities, Heath R. W., Paulraj A. J Signal Process., 2002, 50:.
  • 6L., New tight frames of curvelets and optimal representations of objects with Comm. Pure Appl. Math., 2004, 56: 216-266. ,.
  • 7Linear dispersion codes for MIMO systems based on frame theory, IEEE Trans. 2429-2441.
  • 8B61cskei H., Hlawatsch F., Feichtinger H. G., Frame-theoretic analysis of oversampled filter banks, IEEE Trans Signal Process., 1998, 46: 3256-3268.
  • 9Gavruta L., Perturbation of K-frames, Bul. St. Univ. "Politehnica" Timisoara, Seria Mat. -Fiz, Tom, 2011, 56(70): 48-53.
  • 10Gavruta L., New results on frames for operators, Proc. Intern. Conf. Sciences, 11-12 Nov. 2011, Oradea, Accepted.

共引文献10

同被引文献10

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部