摘要
基于连续K-框架的定义,给出了Hilbert空间连续K-框架的两个等价刻画.在连续K-框架中挖去部分元素还构成连续K-框架的两个充分条件和不构成连续K-框架的一个充分条件,利用合成算子和两个连续Bessel映射的有界线性算子SF,G去刻画连续K-框架.最后讨论Hilbert空间连续K-框架的扰动.
Based on the definition of the continuous K - frames, we propose two kinds of equivalent characterizations for continuous K- frames. We also give two sufficient conditions for the remainder of a continuous K- frame after deleting some elements to be a continuous K -frame and a sufficient con- dition for the remainder to be not a continuous K- frame. We characterize the continuous K- frames by the synthesis operator and a bounder operator SF,G associated with two continuous Bessel mappings. Finally, we discuss the perturbation of continuous K - frames in Hilbert spaces.
出处
《福州大学学报(自然科学版)》
CAS
北大核心
2016年第1期6-11,共6页
Journal of Fuzhou University(Natural Science Edition)
基金
福建省自然科学基金资助项目(2012J01005)
国家自然科学基金数学天元基金资助项目(11226099)
福州大学科技发展基金资助项目(2012-XQ-29)