期刊文献+

On the hyperbolicity of flows

On the hyperbolicity of flows
原文传递
导出
摘要 Let X be a C1 vector field on a compact boundaryless Riemannian manifold M(dim M≥2),and A a compact invariant set of X.Suppose that A has a hyperbolic splitting,i.e.,T∧M = Es Eu with Es uniformly contracting and Eu uniformly expanding.We prove that if,in addition,A is chain transitive,then the hyperbolic splitting is continuous,i.e.,A is a hyperbolic set.In general,when A is not necessarily chain transitive,the chain recurrent part is a hyperbolic set.Furthermore,we show that if the whole manifold M admits a hyperbolic splitting,then X has no singularity,and the flow is Anosov. Let X be a C^1 vector field on a compact boundaryless Riemannian manifold M(dim M≥2),and A a compact invariant set of X.Suppose that A has a hyperbolic splitting,i.e.,T∧M = E^s<X> E^u with E^s uniformly contracting and E^u uniformly expanding.We prove that if,in addition,A is chain transitive,then the hyperbolic splitting is continuous,i.e.,A is a hyperbolic set.In general,when A is not necessarily chain transitive,the chain recurrent part is a hyperbolic set.Furthermore,we show that if the whole manifold M admits a hyperbolic splitting,then X has no singularity,and the flow is Anosov.
机构地区 LMAM
出处 《Science China Mathematics》 SCIE CSCD 2016年第4期645-652,共8页 中国科学:数学(英文版)
基金 supported by the State Key Development Program for Basic Research of China(973 Project)(Grant No.2011CB808002) National Natural Science Foundation of China(Grant Nos.11025101 and 11231001)
关键词 hyperbolicity chain transitive singularity flow 双曲性 流动 向量场 分裂 不变集 奇异性 流形 ES
  • 相关文献

参考文献16

  • 1Alves J F, Arafijo V, Saussol B. On the uniform hyperbolicity of some nonuniformly hyperbolic systems. Proc Amer Math Soc, 2003, 131:1303-1309.
  • 2Araujo V, Pacifico M. Three-dimensional Flows, Ergebnisse der Mathematik und ihrer Grenzgebiete. Heidelberg: Springer-Verlag, 2010.
  • 3Bautista S, Morales C. Existence of periodic orbits for singular-hyperbolic sets. Mosc Math J, 2006, 6:265-297.
  • 4Cao Y. Non-zero Lyapunov exponents and uniform hyperbolicity. Nonlinearity, 2003, 16:1473-1479.
  • 5Castro A. New criteria for hyperbolicity based on periodic sets. Bull Braz Math Soc (NS), 2011, 42:455-483.
  • 6Hasselblatt B. Hyperbolic dynamical systems. In: Hasselblatt B, Katok A, eds. Handbook of Dynamical Systems, vol. 1A. Amsterdam: Elsevier, 2002, 239-319.
  • 7Morales C, Pacifico M. A dichotomy for three-dimensional vector fields. Ergod Theory Dyn Syst, 2003, 23:1575-1600.
  • 8Morales C, Pacifico M, Pujals E. On C1 robust singular transitive sets for three-dimensional flows. C R Acad Sci Paris, 1998, 326:81-86.
  • 9Morales C, Pacifico M, Pujals E. Robust transitive singular sets for 3-flows are partially hyperbolic attractors or repellers. Ann Math, 2004, 160:375-432.
  • 10Palis J, de Melo W. Geometric Theory of Dynamical Systems. New York: Springer-Verlag, 1982.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部