期刊文献+

氧化锌纳米结构的热蒸发沉积合成及生长机理

Thermal evaporation-deposition synthesis and growth mechanism of ZnO nanostructures
下载PDF
导出
摘要 以ZnO粉末为原料,用N2作为载气,采用无催化辅助的热蒸发法沉积制备ZnO纳米结构,分别用X线衍射仪、扫描电镜和透射电镜对ZnO的物相、形貌和结构进行表征,并结合晶体生长理论和实验条件,对ZnO产物的形貌变化和纳米带生长方向进行研究。结果表明:离气源较近的位置到离出口较近的位置,ZnO纳米结构的形貌由连续颗粒膜逐渐向纳米带、直径大于100 nm和直径小于100 nm的纳米线变化。特别是发现ZnO纳米带除了常见的[001]生长方向外,还有[101]和[203]两种极为罕见的生长方向,这些纳米带都具有上下表面均由(±010)晶面组成的特点。ZnO产物的形貌变化是其生长过程由动力学控制为主转向热力学控制为主的结果,纳米带生长方向不同,可能与其晶核形成过程中的竞争生长有关。 Various ZnO nanostructures products were fabricated using catalyst-free thermal evaporation-deposition with ZnO powder as raw materials and N2 as carrier gas. The morphologies and structures of the obtained ZnO were characterized by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The specific morphologies and structures of the as-synthesized nanobelts were discussed by combining the experimental results and the theory on crystal growth. The results show that the morphologies of the ZnO products change from granular films to nanobelts, then to nanowires with diameter greater than 100 nm, and finally to nanowires with diameter smaller than 100 nm, as the increase in the distance from the deposition position to the gaseous precursor. In particular, some ZnO nanobelts exhibit the unusual growth directions of [101] and [203], besides the common direction of [001], but all the nanobelts have the same upper and lower surfaces of(±010) crystallographic planes. The difference in the morphologies of ZnO products is presumed to be resulted from the change in the determining factor from kinetics to thermodynamics during crystal growth. The different growth directions may come from the competition growth of the crystal nuclei during the initial growth of the nanobelts.
出处 《粉末冶金材料科学与工程》 EI 北大核心 2016年第1期18-24,共7页 Materials Science and Engineering of Powder Metallurgy
基金 国家自然科学基金资助项目(51074188,11502080) 中南大学教师研究基金资助项目(2014JSJJ024) 湖南省科技计划项目(2014GK3104)
关键词 ZNO 纳米结构 热蒸发沉积 纳米带 纳米线 生长方向 ZnO nanostructures thermal evaporation-deposition nanobelts nanowries growth direction
  • 相关文献

参考文献29

  • 1JHA S, WANG C D, LUAN C Y, et al. Near-ultraviolet lightemitting devices using vertical ZnO nanorod arrays[J]. Journal of Electronic Materials, 2012, 41(5): 853-856.
  • 2LIU Y, LI Y, ZENG H. ZnO-Based Transparent conductive thin films: Doping, performance, and processing[J]. Journal of Nanomaterials, 2013:196521(9 pp).
  • 3WANG C L, TSAI S J, CHEN J W, et al. Imaging and characterization of piezoelectric potential in a single bent ZnO microwire[J]. Applied Physics Letters, 2014, 105(12): 123115 (4 pp).
  • 4BROCKWAY L, VASIRAJU V, SUNKARA M K, et al. Engineering efficient thermoelectrics from large-scale assemblies of doped ZnO nanowires: Nanoscale effects and resonant-level scattering[J]. ACS Applied Materials & Interfaces, 2014, 6(17): 14923-14930.
  • 5CHEN S, ZHAO W, ZHANG S, et al. Preparation, characterization and photocatalytic activity of N-containing ZnO powder [J]. Chemical Engineering Journal, 2009, 148(2/3): 263-269.
  • 6PAN C T, CHEN Y C, HSIEN C C, et al. Ultrasonic sensing device with ZnO piezoelectric nanorods by selectively electrospraying method[J]. Sensors and Actuators a-Physical, 2014, 216(1): 318-327.
  • 7YEN K Y, CHIU C H, HSIAO C Y, et al. Characteristics of GaN-based LEDs using Ga-doped or/n-doped ZnO transparent conductive layers grown by atomic layer deposition[J]. Journal of Crystal Growth, 2014, 387(1): 91-95.
  • 8WANG X, SONG J, WANG Z L. Nanowire and nanobelt arrays of zinc oxide from synthesis to properties and to novel devices[J]. Journal of Materials Chemistry, 2007, 17(8): 711-720.
  • 9WANG Z L. Oxide nanobelts and nanowires-Growth, properties and applications[J]. Journal of Nanoscience and Nanotechnology, 2008, 8(1): 27-55.
  • 10HU T, LIU B, YUAN F, et al. Triangular ZnO Nanosheets: Synthesis, crystallography and cathodoluminescence[J]. Journal of Nanoscience and Nanoteclmology, 2013, 13(8): 5744-5749.

二级参考文献23

  • 1SOROUSH R, KOOCHI A, KAIEMA A S, et al. Investigating the effect of Casimir and van der Waals attractions on the electrostatic pull-in instability of nano-actuators [J]. Physica scripta, 2010, 82(4): 045801(1-11).
  • 2BUKS E, ROUKES M L. Stiction, adhesion energy and the Casimir effect in micromechanical systems [J]. Physical Review B, 2001, 63(3): 033402(1-4).
  • 3van ZWOL P J, PALASANTZAS G, de HOSSON J T M. Roughness corrections to the Casimir force:The importance of local surface slope [J]. Applied Physics Letters, 2007, 91(14): 144108(1-3).
  • 4NETO P A M, LAMBRECHT A, REYNAUD S. Casimir effect with rough metallic mirrors [J]. Physical Review A, 2005, 72(1): 012115(1-14).
  • 5XIA Y N, XIONG Y J, BYUNGKWON L, et al. Shape- controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics [J]. Angewandte Chemic International Edition, 2009, 48(1): 60-103.
  • 6KEATING C D, NATAN M J. Striped metal nanowires as building blocks and optical tags [J]. Advanced Materials, 2003, 15(5): 451-454.
  • 7WANG S L, HE Y H, FANG X S, et al. Structure and field-emission properties of sub-micrometer-sized tungsten- whisker arrays fabricated by vapor deposition [J]. Advanced Materials, 2009, 21(23): 2387-2392.
  • 8WANG S L, HE Y H, LIU X L, et al. Large-scale synthesis of tungsten single-crystal microtubes via vapor-deposition process [J]. Journal of Crystal Growth, 2011, 316(1): 137-144.
  • 9LIU G, SONG M, HE Y. Factors affecting the growth of micro/nano-sized tungsten whiskers synthesised by vapour deposition [J]. Philosophical Magazine, 2012, 93(6): 584-597.
  • 10LASSNER E, SCHUBERT W D. Tungsten: Properties, Chemistry, Technology of the Element [M]. Alloys, and Chemical Compounds. New York: Kluwer Academic/Plenum Publishers, 1998: 42-56.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部