期刊文献+

改进的万有引力搜索算法在边坡稳定分析中的应用 被引量:8

Application of modified gravitational search algorithm in slope stability analysis
下载PDF
导出
摘要 基于万有引力搜索算法(GSA)提出了一种改进的万有引力搜索算法(MGSA)。针对GSA在处理优化问题时会出现发散的情况,通过限制粒子的速度同时更改算法中的参数来改善这一问题。算法改进后显著提高了GSA中粒子的探索能力与开发能力,可以获得较强的优化能力。采用MATLAB对8个测试基准函数进行仿真实验,并将该方法引入到边坡稳定分析中。对于边坡稳定性分析,利用MGSA搜索出临界滑动面并结合极限平衡法计算出相应的最小安全系数。结果表明:与GSA法及其他方法相比,MGSA在求解最危险滑动面安全系数时具有更好的优化性能。 Based on the gravitational search algorithm(GSA), an effective modified gravitational search algorithm(MGSA) is proposed. Since the GSA divergence occurs during optimization process, the new strategy uses a limited velocity to control the particles and changes the parameters in the algorithm to improve this problem. The modified algorithm improves the exploration and exploitation ability significantly, and has better optimization ability. The performances of the MGSA and GSA are testified by MATLAB on a suite of eight benchmark functions, and the results are compared. Then the method is used to analyze slope stability. For this problem, the MGSA is used to search the critical slip surface and to calculate the corresponding minimum safety factor based on the limit equilibrium method. The simulated results illustrate that the MGSA has better optimization performance in searching the critical slip surface and calculating the safety factor compared with the GSA and other methods.
出处 《岩土工程学报》 EI CAS CSCD 北大核心 2016年第3期419-425,共7页 Chinese Journal of Geotechnical Engineering
关键词 万有引力搜索算法 边坡稳定 临界滑动面 安全系数 基准函数 gravitational search algorithm slope stability critical slip surface safety factor benchmark function
  • 相关文献

参考文献10

  • 1邵信光,杨慧中,陈刚.基于粒子群优化算法的支持向量机参数选择及其应用[J].控制理论与应用,2006,23(5):740-743. 被引量:128
  • 2RASHEDI E, NEZAMABADI-POUR H, SARYAZDI S. GSA: A gravitational search algorithm[J]. Information Sciences, 2009, 179(13): 2232 - 2248.
  • 3徐遥,王士同.引力搜索算法的改进[J].计算机工程与应用,2011,47(35):188-192. 被引量:43
  • 4刘勇,马良.非线性极大极小问题的混沌万有引力搜索算法求解[J].计算机应用研究,2012,29(1):47-48. 被引量:27
  • 5SARAFRAZI S, NEZAMABADI-POUR H, SARYAZDI S. Disruption: A new operator in gravitational search algorithm[J]. Scientia Iranica, 2011, 18(3): 539 - 548.
  • 6SCHUTZ B. Gravity from the ground up[M]. London. Cambridge University Press, 2003.
  • 7范炜峰.万有引力搜索算法的分析与改进[D].广州:广东工业大学,2014.
  • 8RASHEDI E, NEZAMABADI-POUR H, SARYAZDI S. Filter modeling using gravitational search algorithm[J]. Eng Appl ArtifIntell, 2011, 24:117 - 122.
  • 9ZHU D, LEE C, QIAN Q, et al. A concise algorithm for computing the factor of safety using the Morgenstem-Price method[J]. Can Geotech J, 2005, 42:272 - 278.
  • 10CHOWDHURY R, XU D. Reliability index for slope stability assessment - two methods comparod[J]. Reliab Eng Syst Saf, 1992, 37:99 - 108.

二级参考文献33

  • 1邵信光,杨慧中,石晨曦.ε不敏感支持向量回归在化工数据建模中的应用[J].东南大学学报(自然科学版),2004,34(B11):215-218. 被引量:6
  • 2文新辉,陈开周,牛明洁.解无约束极大极小问题的非对称神经网络算法[J].电子学报,1995,23(12):111-114. 被引量:2
  • 3黄震宇,沈祖和.解一类非线性极大极小问题的熵函数方法[J].科学通报,1996,41(17):1550-1554. 被引量:26
  • 4马良,朱刚,宁爱兵.蚁群优化算法[M].北京:科学出版社,2008,2.
  • 5Karakuzu J, Eberhart R C.Particle swarm optimization[C]//Proceedings of IEEE International Conference on Neural Networks, 1995,4:1942-1948.
  • 6Tang K S, Man K F, Kwong S, et al.Genetic algorithms and their applications[J].IEEE Signal Processing Magazine, 1996, 13 (6) :22-37.
  • 7Kirkpatrick S, Gelatto C D, Vecchi M EOptimization by simulated annealing[J].Science, 1983,220: 671-680.
  • 8Dorigo M, Maniezzo V, Colomi A.The ant system: optimization by a colony of cooperating agents[J].IEEE Transactions on Systems, Man,and Cybernetics:Part B, 1996,26(1) :29-41.
  • 9Rashedi E, Nezamabadi-pour H, Saryazdi S.GSA: a gravitational search algorithm[J].lnformation Sciences,2009, 179(13) :2232-2248.
  • 10Kenyon I R.General relativity[M].[S.1.]:Oxford University Press, 1990.

共引文献186

同被引文献109

引证文献8

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部