期刊文献+

基于改进多阈值小波包的去噪算法及应用 被引量:11

An Improved Multiple Threshold Wavelet Packet De-noising Algorithm and Its Application
下载PDF
导出
摘要 提出一种改进多阈值小波包的去噪算法,解决了单一阈值对噪声去除不完全和对一些有用信号无差别去除的问题。应用在智能交通的图像去噪中,解决了不完全及错误去除图像信息的问题。首先采用小波包分解重构算法对图像进行预处理,得到更多的边缘细节。然后针对不同能量对应不同频段的特点,自适应地合理设置阈值,对不同频段下的噪声采用不同阈值去除。实验表明,该方法有效去除噪声,保留了图像的边缘和细节。 An improved multiple threshold wavelet packet de-noising algorithm is proposed, solving the problems of eliminating the noise incompletely and removing some useful signals without distinction. It was applied to the intelligent traffic image and got rid of the image signal de-noising incompletely and wrongly. First of all, the image was preprocessed using the decomposition reconstruction's algorithm of wavelet packet, and got more edge details. Then corresponding to different frequencies, threshold was set reasonable according to the characteristics of different energy adaptively, and different threshold was used to remove noise under different frequencies. Experiments showed that the method could remove the single noise effectively while preserving the image edges and details.
出处 《计量学报》 CSCD 北大核心 2016年第2期205-208,共4页 Acta Metrologica Sinica
基金 国家自然科学基金(61473248) 河北省自然科学基金(F2015203413) 河北省高等学校科学技术研究重点项目(ZD2014100)
关键词 计量学 去噪 小波包 多阈值 图像预处理 智能交通 metrology de-nosing wavelet packet multiple threshold image preprocess intelligent traffic
  • 相关文献

参考文献12

二级参考文献62

  • 1侯铁双,相敬林,韩鹏.基于DT-CWT统计模型的舰船噪声信号中线谱信号检测研究[J].西北工业大学学报,2009,27(6):801-805. 被引量:3
  • 2石宏理,胡波.双树复小波变换及其应用综述[J].信息与电子工程,2007,5(3):229-234. 被引量:24
  • 3宋建社.小波分析及其应用例选[M].现代出版社,1998,5..
  • 4程正兴.小波分析算法与应用[M].西安:西安交通大学出版社,2003..
  • 5KennethR Castleman.数字图像处理[M].北京:电子工业出版社,1998..
  • 6Hanna Pohjonen, Image fusion in open-architecture PACS-environment [J] .Computer Methods and programs in Biomedicine 66(2001)69 - 74.
  • 7Gabor.Theory of communication[J].JIEE,1946,93:429~441.
  • 8Mallat S.A theory for multiresolution signal decomposition:the wavelet representation[J].IEEE Trans on Pattern Analysis and Machine Intelligence,1989,11:674 ~ 693.
  • 9Marcin S,Piotr W.Neuro-wavelet classifiers for EEG signals based on rough set methods[J].IEEE Trans on Neurocomputing,2001,36(1):103 ~ 112.
  • 10Cohen L.Time-Frequency Analysis:Theory and Applications.[M].New York:Prentice Hall,1995.

共引文献161

同被引文献73

引证文献11

二级引证文献82

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部