摘要
研究方程Q(u)=g,其中Q是映射一个赋范空间到另一个的连续二次算子。显然,若u是该方程的一个解,则-u也是一个解。给出没有其它解的条件,并应用其研究偏微方程uΔu=g的Dirichlet边值问题。
Consider the equation Q(u) = g,where Q is a continuous quadratic operator acting from one normed space to another one.Obviously,if u is a solution of such equation,then-u is also a solution.Conditions implying that there are no other solutions are given and applied to the study of the Dirichlet boundary value problem for the partial differential equation uΔu = g.
出处
《黑龙江大学自然科学学报》
CAS
北大核心
2016年第1期1-5,141,共5页
Journal of Natural Science of Heilongjiang University
关键词
二次算子
二次泛函方程
向量空间
quadratic operator
quadratic functional equation
vector space