摘要
为了研究量子群U_q(C_3)及其有限维不可约模的Grbner-Shirshov基,基于赋值图C3的Auslander-Reiten理论和表示的Grbner-Shirshov基理论,运用Ringel-Hall代数方法,构造了量子群U_q(C_3)的Grbner-Shirshov基,进而用双自由模及钻石-合成引理,给出量子群U_q(C_3)的有限维不可约模的Grbner-Shirshov基.
Based on Auslander-Reiten theory of valued graph C3 and Gr?bner-Shirshov bases for representation theory, First by using the Ringel-Hall algebra approach, a Gr?bner-Shirshov basis of quantum group Uq ( C3 ) was constructed. Then, a Gr?bner-Shirshov basis of finite dimensional irreducible modules of Uq ( C3 ) was given by using double free module and composition lemma.
出处
《北京工业大学学报》
CAS
CSCD
北大核心
2016年第4期632-636,共5页
Journal of Beijing University of Technology
基金
国家自然科学基金资助项目(11471186)