期刊文献+

铱单晶的纳米压痕尺寸效应研究 被引量:2

Nanoindentation Size Effect of Iridium Single Crystal
下载PDF
导出
摘要 采用纳米压痕技术和原子力显微镜对铱(Ir)单晶(100)和(110)取向的载荷-位移曲线、弹性模量、压痕形貌、压痕硬度-加载深度等进行了研究.结果表明,Ir(100)与Ir(110)单晶的弹性模量分别为477 和493 GPa;加载深度为10~2500 nm 时,Ir 单晶的纳米压痕硬度存在压痕尺寸效应,在10~500nm 时表现更为强烈,表明随着加载深度的增加,单晶材料的硬度减小;基于Nix-Gao 模型,计算出Ir(100)和Ir(110)单晶的纳米硬度H0 分别为2.32 和2.46 GPa,当加载深度分别大于4910 和5220 nm时,Ir 单晶的纳米硬度不存在尺寸效应,可作为金属铱硬度测试的重要依据;采用硬度和深度的幂律关系计算出Ir(100)和Ir(110)单晶的尺寸效应因子(m)分别为0.44 和0.48,该值远远大于其他金属和半导体材料,这种反常现象可能与铱原子间的异常强的交互作用有关. Load-depth curves, elastic modulus, indentation morphology as well as the relationship betweennanohardness and indent depth of (110) and (100) oriented iridium single crystals were investigated viananoindentation technique and atomic force microscopy (AFM). The results indicate that the elasticmodulus of Ir(100) and Ir(110) is 477 GPa and 493 GPa, respectively. The indentation size effect (ISE) isobserved over the entire range of indentation depths 10~2500 nm, particularly for the depth in the range of10~500 nm. Based on Nix-Gao model, the calculated nanohardness (H0) of Ir(100) and Ir(110) is 2.32 and2.46 GPa, respectively, which is defined as the ISE disappeared. There is no ISE can be observed on Ir(100)and Ir(110) as the penetrating depth more than about 4910 and 5220 nm, respectively. By means of powerlaw, the ISE factor (m) of Ir(110) and Ir(100) are calculated as 0.48 and 0.44, respectively, which are muchgreater than those of other metallic and semi-metallic materials. This anomaly may be associated withabnormally strong interactions between atoms of iridium.
出处 《贵金属》 CAS CSCD 北大核心 2016年第1期27-32,共6页 Precious Metals
基金 NSFC-国家自然科学基金云南省联合基金(U1202273) 国家自然科学基金(51501075) 云南省院所技术开发专项(2014DC018)
关键词 金属材料 铱单晶 压痕尺寸效应 纳米压痕 metal materials Ir single crystal indentation size effect (ISE) nanoindentation
  • 相关文献

参考文献1

二级参考文献38

  • 1Hunt L B. A history of iridium[J]. Platinum Metals Review, 1987, 31(1): 32-41.
  • 2Shoobert G W. Iridium electrodes Increase spark plug life[J]. Platinum Metals Review, 1962, 6(3): 92-94.
  • 3Cockayne B. Czochralslri growth of oxide single crystals[J]. Platinum Metals Rev, 1974, 18(3): 86-91.
  • 4Inouye H. Platinum group alloy containers[J]. Platinum Metals Rev, 1979, 23(3): 100-108.
  • 5Liu C T, Inouye H. Development and characterization of an improved Ir-0.3% W alloy for space radioisotopic heat sources[R]. Tenn (USA): Oak Ridge National Lab, 1977.
  • 6Panfilov P, Yermakov A, Antonova O V, et al. Plastic deformation of polycrystalline iridium at room temperature[J]. Platinum Metals Review, 2009, 53(3): 138-146.
  • 7Ohriner E K. Processing of iridium and iridium alloys[J]. Platinum Metals Review, 2008, 52(3): 186-197.
  • 8Takasugi T, George E P, Pope D P, et al. Intergranular fracture and grain boundary chemistry of Ni3A1 and Ni3Si[J]. Scripta Metallurgica, 1985, 19(4): 551-556.
  • 9Mordike B L, Brookes C A. The tensile properties of iridium at high temperatures[J]. Platinum Metals Review, 1960, 4(3): 94-99.
  • 10Panfilov P, Dmitriev A Y V. Fracture behaviour of poly-crystalline iridium under tension in the temperature range 20-1500 C [J]. Journal of Materials Science Letters, 1994, 13(9): 137-141.

共引文献2

同被引文献16

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部