期刊文献+

Topological to trivial insulating phase transition in stanene 被引量:2

Topological to trivial insulating phase transition in stanene
原文传递
导出
摘要 stanene 的电子性质, graphene 的 Sn 对应物理论上用第一原则的模拟被学习。对一个 out-of-plane 电场或由量监禁效果导致的小绝缘阶段转变拓扑被预言。结果加亮潜力在门电压使用 stanene nanoribbons 控制了无驱散的基于纺纱的设备并且被用来将最小的 nanoribbon 宽度放为如此的设备,它典型地是约 5 nm。 Electronic properties of stanene, the Sn counterpart of graphene are theoretically studied using first-principles simulations. The topological to trivial insulating phase transition induced by an out-of-plane electric field or by quantum confinement effects is predicted. The results highlight the potential to use stanene nanoribbons in gate-voltage controlled dissipationless spin-based devices and are used to set the minimal nanoribbon width for such devices, which is typically approximately 5 nm.
出处 《Nano Research》 SCIE EI CAS CSCD 2016年第3期774-778,共5页 纳米研究(英文版)
关键词 相变 绝缘 拓扑 量子限域效应 电子特性 模拟理论 第一原理 结构预测 two-dimensional (2D)materials,topological insulators,density functional theory(DFT) simulations,electronic structure
  • 相关文献

参考文献23

  • 1Butler, S. Z.; Hollen, S. M.; Cao, L. Y.; Cui, Y.; Gupta, J. A.; Guti6rrez, H. R.; Heinz, T. F.; Hong, S. S.; Huang, J. X.;Ismach, A. F. et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 2013, 7, 2898-2926.
  • 2Fiori, G.; Bonaccorso, F; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S. K.; Colombo, L. Electronics based on two-dimensional materials. Nat. Nanotechnol. 2014, 9, 768 779.
  • 3Schwierz, F.; Pezoldt, J.; Granzner, R. Two-dimensional materials and their prospects in transistor electronics. Nanoscale 2015, 7, 8261-8283.
  • 4Lin, Y. M.; Dimitrakopoulos, C.; Jenkins, K. A.; Farmer, D. B.; Chiu, Y. H.; Grill, A.; Avouris, Ph. 100-GHz transistors from wafer-scale epitaxial graphene. Scienee 2010, 327, 662.
  • 5Kang, K.; Xie, S.; Huang, L. J.; Han, Y. M.; Huang, P. Y.; Mak, K. F.; Kim, C. J.; Muller, D.; Park, J. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 2015, 520, 656-660,.
  • 6Vogt, P.; De Padova, P.; Quaresima, C.; Avila, J.; Frantzeskakis, E.; Asensio, M. C.; Resta, A.; Ealet, B.; Le Lay, G. Silicene: Compelling experimental evidence for graphenelike two- dimensional silicon. Phys. Rev. Lett. 2012, 108, 155501.
  • 7Tao, L.; Cinquanta, E.; Chiappe, D.; Grazianetti, C.; Fanciulli, M.; Dubey, M.; Molle, A.; Akinwande, D. Silicene field-effect transistors operating at room temperature. Nat. Nanotechnol. 2015, 10, 227-231.
  • 8Houssa, M.; Dimoulas, A.; Molle, A. Silicene: A review of recent experimental and theoretical investigations. J. Phys.. Condens. Matter 2015, 27, 253002-253020.
  • 9Davila, M. E.; Xian, L.; Cahangirov, S.; Rubio, A.; Le Lay, G. Germanene: A novel two-dimensional germanium allotrope akin to graphene and silicene. NewJ. Phys. 2014, 16, 095002.
  • 10Xu, Y.; Yan, B. H.; Zhang, H. J.; Wang, J.; Xu, G.; Tang, P.; Duan, W.; Zhang, S. Z. Large-gap quantum spin hall insulators in tin films. Phys. Rev. Lett. 2013, 111, 136804.

同被引文献1

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部