期刊文献+

Molybdenum sulfide/graphene-carbon nanotube nanocomposite material for electrocatalytic applications in hydrogen evolution reactions 被引量:8

Molybdenum sulfide/graphene-carbon nanotube nanocomposite material for electrocatalytic applications in hydrogen evolution reactions
原文传递
导出
摘要 We report a three-dimensional hierarchical ternary hybrid composite of molybdenum disulfide (MoS2), reduced graphene oxide (GO), and carbon nano- tubes (CNTs) prepared by a two-step process. Firstly, reduced GO-CNT composites with three-dimensional microstructuresare synthesized by hydrothermal treatment of an aqueous dispersion of GO and CNTs to form a composite structure via π-π interactions. Then, MoS2 nanoparticles are hydrothermally grown on the surfaces of the GO-CNT composite. This ternary composite shows superior electrocatalytic activity and stability in the hydrogen evolution reaction, with a low onset potential of only 35 mV, a Tafel slope of -38 mV.decade-1 and an apparent exchange current density of 74.25 mA.cm-2. The superior hydrogen evolution activity stemmed from the synergistic effect of MoS2 with its electrocatalytically active edge-sites and excellent electrical coupling to the underlying graphene and CNT network. We report a three-dimensional hierarchical ternary hybrid composite of molybdenum disulfide (MoS2), reduced graphene oxide (GO), and carbon nano- tubes (CNTs) prepared by a two-step process. Firstly, reduced GO-CNT composites with three-dimensional microstructuresare synthesized by hydrothermal treatment of an aqueous dispersion of GO and CNTs to form a composite structure via π-π interactions. Then, MoS2 nanoparticles are hydrothermally grown on the surfaces of the GO-CNT composite. This ternary composite shows superior electrocatalytic activity and stability in the hydrogen evolution reaction, with a low onset potential of only 35 mV, a Tafel slope of -38 mV.decade-1 and an apparent exchange current density of 74.25 mA.cm-2. The superior hydrogen evolution activity stemmed from the synergistic effect of MoS2 with its electrocatalytically active edge-sites and excellent electrical coupling to the underlying graphene and CNT network.
出处 《Nano Research》 SCIE EI CAS CSCD 2016年第3期837-848,共12页 纳米研究(英文版)
基金 Majid Khan and Ammar Bin Yousaf contributed equally to this work. This work is supported by the China Scholarship Council (CSC), and the National Natural Science Foundation of China (Nos. 11275203 and U1232128).
关键词 3D nanostructure MOS2 GRAPHENE carbon nanotubes hydrogen evolutionreaction 3D nanostructure,MoS2,graphene,carbon nanotubes,hydrogen evolutionreaction
  • 相关文献

参考文献52

  • 1Bard, A. J.; Fox, M. A. Artificial photosynthesis: Solar splitting of water to hydrogen and oxygen. Acc. Chem. Res. 1995, 28, 141 145.
  • 2Dresselhaus, M. S.; Thomas, I. L. Alternative energy technologies. Nature 2001, 414, 332-337.
  • 3Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q. X.; Santori, E. A.; Lewis, N. S. Solar water splitting cells. Chem. Rev. 2010, 110, 6446-6473.
  • 4Li, Y. G.; Wang, H. L.; Xie, L. M.; Liang, Y. Y.; Hong, G. S.; Dai, H. J. MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2011, 133, 7296-7299.
  • 5Zheng, Y.; Jiao, Y.; Zhu, Y. H.; Li, L. H.; Han, Y.; Chen, Y.; Du, A. J.; Jaroniec, M.; Qiao, S. Z. Hydrogen evolution by a metal-free electrocatalyst. Nat. Commun. 2014, 5, 3783.
  • 6Hou, Y. D.; Laursen, A. B.; Zhang, J. S.; Zhang, G. G.; Zhu, Y. S.; Wang, X. C.; Dahl, S.; Chorkendorff, I. Layered nanojunctions for hydrogen-evolution catalysis. Angew. Chem., Int. Ed. 2013, 52, 3621-3625.
  • 7Faber, M. S.; Dziedzic, R.; Lukowski, M. A.; Kaiser, N. S.; Ding, Q.; Jin, S. High-performance electrocatalysis using metallic cobalt pyrite (COS2) micro- and nanostructures. J. Am. Chem. Soc. 2014, 136, 10053-10061.
  • 8Xu, Y. F.; Gao, M. R.; Zheng, Y. R.; Jiang, J.; Yu, S. H. Nickel/nickel(11) oxide nanoparticles anchored onto cobalt(IV) diselenidenanobelts for the electrochemical production of hydrogen. Angew. Chem., Int. Ed. 2013, 52, 8546-8550.
  • 9Chert, W. F.; Muckerman, J. T.; Fujita, E. Recent developments in transition metal carbides and nitrides as hydrogen evolution electrocatalysts. Chem. Commun. 2013, 49, 8896-8909.
  • 10Popczun, E. J.; Read, C. G.; Roske, C. W; Lewis, N. S.; Schaak, R. E. Highly active electrocatalysis of the hydrogen evolution reaction by cobalt phosphide nanoparticles. Angew. Chem., Int. Ed. 2014, 53, 5427-5430.

同被引文献24

引证文献8

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部