期刊文献+

逼近最小和译码性能的并行多比特翻转译码算法研究 被引量:1

Parallel Multi-Bit Flipping Decoding with Near Min-Sum Decoding Performance
下载PDF
导出
摘要 相比于最小和译码算法,LDPC码的另外一种译码算法——比特翻转译码算法实现更简单,但其性能有较大恶化。最近提出的有噪梯度下降比特翻转译码(NGDBF)算法性能相比简单的比特翻转算法性能有明显提高,但该算法一次翻转一个比特限制了其应用。结合并行加权比特翻转译码(PWBF)中翻转标记的思想,本文提出了一种NGDBF译码的改进算法——并行NGDBF译码及其自适应形式,克服了PWBF译码对行重/列重较小的LDPC码性能不佳的缺陷。仿真表明:并行NGDBF译码的性能优于相应的NGDBF译码,其自适应形式不仅性能逼近最小和译码,而且实现简单。 Compared to min-sum algorithm,bit-flipping algorithm for decoding of low-density parity-check( LDPC) codes can be implemented with lower complexity,but perform worse. There are increased interests on improving the performance of bit-flipping algorithm without much increase of complexity,and a recent progress is the development of the noisy gradient descent bit-flip( NGDBF) algorithm. In this paper,we propose a parallel version of NGDBF( P-NGDBF) algorithm by borrowing some ideas from parallel weighted bit-flipping( PWBF) decoding,which shows its performance favor for low row /column weight LDPC matrices. Simulations shows that the P-NGDBF algorithm has better decoding performance and its adaptive version can perform very close to the min-sum algorithm.
作者 褚楚 吴晓富
出处 《信号处理》 CSCD 北大核心 2016年第2期214-219,共6页 Journal of Signal Processing
基金 国家自然科学基金(61372123) 南京邮电大学科研启动基金(NY213002)
关键词 比特翻转译码 低密度奇偶校验码 有噪梯度下降译码 并行加权比特翻转译码 bit-flipping decoding low-density parity-check(LDPC) codes noisy gradient descent bit-flip(NGDBF) decoding parallel weighted bit-flipping(PWBF) decoding
  • 相关文献

参考文献10

  • 1MacKay D J C, Neal R M. Near Shannon limit peflbrm- ance of low density parity check codes [ J ]. Electronics letters, 1996, 32(18) : 1645-1646.
  • 2Kou Y, Lin S, Fossorier M P C. Low-density parity-check codes based on finite geometries: a rediscovery and new results [ J ]. IEEE Transactions on Information Theory, 2001,47(7) : 2711-2736.
  • 3Sipser M, Spielman D A. Expander codes [ Jt. IEEE Transactions on Information Theory, 1996, 42 ( 6 ) : 1710-1722.
  • 4Wu X, Jiang M, Zhao C, et al. Fast weighted bit-flip- ping decoding of finite-geometry LDPC codes [ C ]//2006 IEEE Information Theory Workshop-ITW' 06 Chengdu. 2006 : 132-134.
  • 5Wu X, Zhao C, You X. Parallel weighted bit-flipping de- coding[ J ]. Communications Letters, IEEE, 2007, 11 (8) : 671-673.
  • 6Wadayama T, Nakamura K, Yagita M, et al. Gradient descent bit flipping algorithms for decoding LDPC codes [J]. IEEE Transactions on Communications, 2010, 58 (6) : 1610-1614.
  • 7Sundararajan G, Winstead C, Boutillon E. Noisy gradient descent bit-flip decoding for LDPC codes [ J ]. IEEE Trans- actions on Communications, 2014, 62( 10): 3385-3400.
  • 8Chakrabartty S, Shaga R K, Aono K. Noise-shaping gra- dient descent-based online adaptation algorithms for digit- al calibration of analog circuits [ J ]. IEEE Transactions on Neural Networks and Learning Systems, 2013, 24 (4) :554-565.
  • 9Ismail M, Ahmed I, Coon J, et al. Low latency low pow- er bit flipping algorithms for LDPC decoding I C ~///Per- sonal Indoor and Mobile Radio Communications (PIM- RC), 2010 IEEE 21st International Symposium on. IEEE, 2010:278-282.
  • 10Wu X, Ling C, Jiang M, et al. New insights into weigh- ted bit-flipping decodingE J]. IEEE Transactions on Com- munications, 2009, 57 ( 8 ) : 2177-2180.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部