期刊文献+

一种基于区间规则的条件证据网络推理决策方法 被引量:1

A conditional evidential network reasoning and decision method based on interval rules
原文传递
导出
摘要 针对证据网络推理方法无法对区间规则进行表示和推理的问题,提出一种基于区间规则的条件证据网络推理决策方法.该方法针对模糊规则的条件概率或信度为不确定区间的情况,可同时表达不确定性和模糊性;并将区间不确定规则转化为区间条件信度函数作为证据网络的结点参数,通过条件推理和证据融合得到条件证据网络中各结点幂集空间中焦元的随机分布作为决策依据.最后,通过空中目标态势评估实例,验证了所提出方法的有效性. To solve the problem that the interval rules can not be expressed and reasoned based on evidential networks, a conditional evidential network reasoning and decision method based on interval rules is proposed. The method extends fuzzy rules to interval uncertain rules, which can express the uncertainty and fuzziness simultaneously. Then, the interval uncertain rules are translated to interval conditional belief functions as the parameters of the nodes in evidential networks. The decision conclusion can be drawn by the random distribution of the nodes' power sets, which is obtained by conditional inference and evidential fusion. Finally, the effectiveness of the proposed method is illustrated through the air target situation assessment example.
出处 《控制与决策》 EI CSCD 北大核心 2016年第3期394-402,共9页 Control and Decision
基金 国家自然科学基金重点项目(61032001) 国家自然科学基金项目(61102166 61471379) 教育部新世纪优秀人才支持计划项目(NCET-11-0872)
关键词 区间不确定规则 证据网络 信息融合 条件推理 态势评估 interval uncertainrules evidential networks information fusion conditional inference situation assessment
  • 相关文献

参考文献21

  • 1胡丽芳,关欣,何友,邓勇.基于Haenni方法的证据冲突原因分析[J].信息与电子工程,2011,9(2):219-223. 被引量:2
  • 2何友,胡丽芳,关欣,邓勇,韩德强.一种度量广义基本概率赋值冲突的方法[J].中国科学:信息科学,2011,41(8):989-997. 被引量:12
  • 3胡丽芳,关欣,邓勇,何友.广义幂集空间中证据冲突的原因分析[J].控制理论与应用,2011,28(12):1717-1722. 被引量:13
  • 4Shenoy P P. Valuation-based systems: A framework for managing uncertianty in expert systems[M]. New York: Wiley, 1992: 12.
  • 5Hong Xu, Philippe Smets. Reasoning in evidential networks with conditional belief functions[J]. Int J of Approximate Reasoning, 1996, 14(2-3): 155-185.
  • 6Philippe Smets. Belief functions: The disjunctive rule of combination and the generalized bayesian theorem[J]. Int J of Approximate Reasoning, 1993, 9(1): 1-35.
  • 7Boutheina Ben Yaghlane, Khaled Mellouli. Inference in directed evidential networks based on the tranferable belief mode[J]. Int J of Approximate Reasoning, 2008, 48(2): 399-418.
  • 8Wafa Laamari, Boutheina Ben Yaghlane, Christophe Simon. On the complexity of the graphical representation and the belief inference in the dynamic directed evidential networks with conditional belief functions[C]. Scalable Uncertainty Management. Heidelberg: Springer, 2012: 206-218.
  • 9Wilson N. Algorithms for Dempster-Shafer theory[C]. Handbook of Defeasible Reasoning and Uncertainty Management Systems. Kluwer: D.M. Gabbay, 2000, 5: 421-475.
  • 10Wafa Laamari, Boutheina Ben Yaghlane, ChristopheSimon. On the use of a mixed binary join tree for exact inference in dynamic directed evidential networks with conditional belief fuctions[C]. The 6th Int Conf on Knowledge Science, Engineering and Management. Dalian, 2013: 310-324.

二级参考文献143

共引文献52

同被引文献4

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部