期刊文献+

一类非线性系统的广义模糊双曲正切模型自适应控制器设计 被引量:3

Generalized fuzzy hyperbolic model adaptive control design for a class of nonlinear systems
原文传递
导出
摘要 针对一类非线性系统的稳定控制器设计问题,根据广义模糊双曲正切模型的万能逼近性质,提出一种带有可调参数的广义模糊双曲正切模型的自适应控制器设计方法.该设计方法的优点是使得自适应律的个数不依赖于广义模糊双曲正切模型的线性基函数的输出形式,可以有效减少在线估计的参数数目,并且能够保证被控系统的状态一致终极有界.最后通过数值算例表明了所提出的设计方法的有效性. The problem of controller design for a class of nonlinear systems stability is discussed. A design method of generalized fuzzy hyperbolic model adaptive control with adjustable parameters is proposed according to universal approximation properties. The advantage of the design method is that the number of adaptive laws do not depend on the linear basis function of the output of the generalized fuzzy hyperbolic model, which can reduce the number of on-line parameters, and also guarantee the states of systems uniformly ultimately bound(UUB). Finally, a numerical example is given to illustrate the effectiveness of the proposed method.
出处 《控制与决策》 EI CSCD 北大核心 2016年第3期417-422,共6页 Control and Decision
基金 国家自然科学基金项目(61305098 61403264) 陕西省教育厅科学研究计划项目(14JK1671 14JF028 14JK1666) 陕西省科技厅项目(2014K05-29) 西安邮电大学"西邮新星"团队项目
关键词 非线性系统 广义模糊双曲正切模型 自适应控制 一致终极有界 nonlinear systems generalized fuzzy hyperbolic model adaptive control uniformly ultimately bounded
  • 相关文献

参考文献19

  • 1Wang L X, Mendel J M. Fuzzy basis functions, universal approximation and orthogonal least squares learning[J]. IEEE Trans on Neural Networks, 1992, 3(5): 807-814.
  • 2Wang L X. Adaptive fuzzy systems and control: Design and Stability Analysis[M]. New Jersey: Prentice Hall, 1994: 9-28.
  • 3秦勇,贾利民,张锡第.基于广义模糊基函数的多变量模糊模型及其辨识方法[J].控制与决策,1997,12(A00):491-495. 被引量:2
  • 4Takagi T, Sugeno M. A robust stabilization problem of fuzzy control systems and its application to backing up control of truck-trailer[J]. IEEE Trans on Fuzzy Systms, 1994, 2(2): 119-133.
  • 5李医民,杜一君.区间Type-2 T-S间接自适应模糊控制[J].控制理论与应用,2011,28(11):1558-1568. 被引量:3
  • 6Cao S G, Ress N W. Analysis and design for a class of complex control systems, Part I: Fuzzy modeling and identification[J]. Automatica, 1997, 33(6): 1017-1028.
  • 7Zhao Y, Zhang T Y, Yang D S, et al. Fuzzy modeling and synchronization of different hyperchaotic systems via T-S models[J]. Applied Mathematics and Information Sciences, 2013, 7(1L): 193-200.
  • 8Ahn C K. Takagi-Sugeno fuzzy receding horizon chaotic synchronization and its application to the Lorenz system[J]. Nonlinear Analysis: Hybrid Systems, 2013, 9: 1-8.
  • 9张化光,全永兵.模糊双曲正切模型的建模方法与控制器设计[J].自动化学报,2000,26(6):729-735. 被引量:24
  • 10Zhang H G, Quan Y B. Modeling, identification and control of a class of nonlinear system[J]. IEEE Trans on Fuzzy Systems, 2001, 9(2): 349-354.

二级参考文献33

共引文献61

同被引文献14

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部