摘要
借助Berry-Esseen引理和Asmussen对条件Borel—Cantelli引理的重要推广,在变化环境中上临界分枝过程的每一代每一个个体的后代个体总数的2阶矩有一致上下界的情况下,得到变化环境中分枝过程的重对数律,从而改进了在相应的2+6阶矩有限条件下的证明.
By the Berry-Esseen lemma and an important extension of the conditional Borel-Cantelli lemma (Asmussen, Trans Am Math Soc, 1977,231:233), we obtain the law of the iterated logarithm of the branching processes in varying environment under the condition that the second moment of the number of the offspring of each individual of each generation is uniformly upper/lower bounded. Further more, the condition is weaker than that of Gao(Gao, UCAS, Thesis 2011).
出处
《中国科学院大学学报(中英文)》
CSCD
北大核心
2016年第2期145-149,共5页
Journal of University of Chinese Academy of Sciences
基金
Supported by National Natural Science Foundation of China(11171342)
关键词
变化环境
分枝过程
重对数律
varying environment
branching process
law of the iterated logarithm