期刊文献+

变化环境中Galton-Watson过程的重对数律

Law of iterated logarithm of Galton-Watson processes in varying environment
下载PDF
导出
摘要 借助Berry-Esseen引理和Asmussen对条件Borel—Cantelli引理的重要推广,在变化环境中上临界分枝过程的每一代每一个个体的后代个体总数的2阶矩有一致上下界的情况下,得到变化环境中分枝过程的重对数律,从而改进了在相应的2+6阶矩有限条件下的证明. By the Berry-Esseen lemma and an important extension of the conditional Borel-Cantelli lemma (Asmussen, Trans Am Math Soc, 1977,231:233), we obtain the law of the iterated logarithm of the branching processes in varying environment under the condition that the second moment of the number of the offspring of each individual of each generation is uniformly upper/lower bounded. Further more, the condition is weaker than that of Gao(Gao, UCAS, Thesis 2011).
出处 《中国科学院大学学报(中英文)》 CSCD 北大核心 2016年第2期145-149,共5页 Journal of University of Chinese Academy of Sciences
基金 Supported by National Natural Science Foundation of China(11171342)
关键词 变化环境 分枝过程 重对数律 varying environment branching process law of the iterated logarithm
  • 相关文献

参考文献7

  • 1Heyde C C. Some almost sure convergence theorems forbranching processes [ J ]. Z Wahrscheinlichkeitstheorie verwGeb, 1971,20: 189-192.
  • 2Heyde C C,Leslie J R. Improved classical limit analogues forGalton-Watson processes with or without immigration [ J ].Bull Austral Math Soc,1971, 5: 145-155.
  • 3Asmussen S. Almost sure behavior of linear functionals ofsupercritical branching processes [ J ]. Transactions of TheAmerican Mathematical Society, 1977 , 231 (1) : 233-248.
  • 4Huggins R M. Laws of the iterated logarithm for time changedbrownian motion with an application to branching processes[J]. Ann Probability, 1985, 13(4) : 1148-1156.
  • 5Gao 2 L. Limit theorems for Galton-Watson processes inrandom environments [ D ]. Beijing ; Graduate University ofChinese Academy of Sciences , 2011 ( in Chinese).
  • 6Feam D H. Galton-Watson processes with generation dependence[J]. Proc Sixth Berkeley Symp Math Statist Probab, 1971,2:159-172.
  • 7Durrett R. Probability : theory and examples [ M ]. 3rd ed.Beijing : World Book Inc, 2011.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部