期刊文献+

自由托盘输送水果分级执行机构仿真优化分析 被引量:1

Grading actuator simulation and optimization analysis of free pallet conveying fruit
下载PDF
导出
摘要 为了提高自由托盘输送条件下易损伤水果分级的准确性,在ADAMS中建立了易损水果分级机的虚拟样机仿真模型,采用三因素三水平的正交仿真分析,研究了分级执行机构转动的角度、输送带的速度、水果的质量3个因素对水果分级准确率的影响,得到了可以表征水果分级准确性的回归方程,最后由得到的回归方程计算所得的工艺参数对水果分级的准确性进行验证试验.结果表明:当单个水果的质量范围在236.3-287.7 g变化时,水果分级的准确率为86.7%;当单个水果质量范围在247.8-275.2 g变化时,水果分级准确率达到100%. To improve the accuracy of delicate fruit production line for fruit grading and reduce the blindness of scan debugging, the virtual prototype simulation model was established in ADAMS software. Through the quadratic general rotary design experiments with three factors and three levels at virtual prototype, the effects of rotating actuator angle, conveyor belt speed and fruit weight on the fruit grading accuracy were discussed to obtain the regression equation of the accuracy for fruit classification. The process parameters of vulnerable fruit production line for fruit grading were obtained by the regression equation and used to conduct verification test. The results show that when the weight of fruit ranges from 236.3 to 287.7 g, the fruit grading accuracy is 86.7%. When fruit weight ranges from 247.8 to 275.2 g, the fruit grading accuracy rate reaches 100%.
出处 《江苏大学学报(自然科学版)》 EI CAS CSCD 北大核心 2016年第1期49-54,共6页 Journal of Jiangsu University:Natural Science Edition
基金 国家"十二五"科技支撑计划项目(2011BAD20B12)
关键词 水果分级 虚拟仿真 优化分析 接触碰撞 回归方程 fruit grading virtual reaches 100% simulation optimization analysis contact collision regression equation
  • 相关文献

参考文献21

  • 1TAO Y, HEINEMANN H P, VARGHESE Z, et al. Ma-chine vision for color inspection of potatoes and apples [J~. Transaction of the ASAE, 1995, 38(5) :1555 - 1561.
  • 2BLASCO J, ALEIXOS N, MOLTO E. Machine vision system for automatic quality grading of fruit [ J]. Biosys- terns Engineering, 2003, 85(3) :415 -423.
  • 3LEEMANS V, DESTAIN M F. A real-time grading method of apples based on features extracted from de- fects[J]. Journal of Food Engineering, 2004, 61 (1) : 83 - 89.
  • 4KONDO N. Robotization in fruit grading system [ J ]. Sensing and Instrumentation for Food Quality and Safe- ty, 2009, 3(1) : 81 -87.
  • 5UNAY D, GOSSELIN B, KLEYNEN O, et al. Auto- matic grading of bicolored apples by muhispectral ma- chine vision[ J]. Computers and Electronics in Agricul- ture, 2011, 75(1): 204-212.
  • 6MENDOZA F, LU R, CEN H. Grading of apples based on firmness and soluble solids content using Vis/SWNIR spectroscopy and spectral scattering techniques [ J ]. Journal of Food Engineering, 2014, 125:59-68.
  • 7何东健,杨青,薛少平,赵静.果实缺陷面积的计算机视觉测定研究[J].农业工程学报,1997,13(4):156-160. 被引量:30
  • 8应义斌,景寒松,马俊福,赵匀,蒋亦元.机器视觉技术在黄花梨尺寸和果面缺陷检测中的应用[J].农业工程学报,1999,15(1):197-200. 被引量:62
  • 9蒋焕煜,应义斌,王剑平,饶秀勤,徐惠荣,汪懋华.水果品质智能化实时检测分级生产线的研究[J].农业工程学报,2002,18(6):158-160. 被引量:68
  • 10冯斌,汪懋华.基于计算机视觉的水果大小检测方法[J].农业机械学报,2003,34(1):73-75. 被引量:73

二级参考文献39

共引文献597

同被引文献11

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部