期刊文献+

混合SDN的自适应流量估计方法 被引量:2

Adaptive Traffic Estimation Method for Hybrid SDN
下载PDF
导出
摘要 流量矩阵是混合软件定义网络(SDN)流量工程的重要输入,但难以全部直接测量,已有的估计方法主要针对传统IP网络,不完全适用于混合SDN网络。针对该问题,提出一种基于源-目的(OD)流聚类的自适应多Elman神经网络算法。通过对OD流按照时间变化模式进行聚类,将单一的高维训练样本分解为多个低维训练样本,强化各低维样本的关键特征,以训练相应的Elman神经网络,构成多Elman神经网络模型,并利用混合SDN中部分OD流可以持续精确测量的特点,根据网络状态变化动态调整估计算法的参数。实验结果表明,与广义层析重力算法相比,该算法具有更高的估计精度和更好的自适应能力。 Traffic matrix is an important input for traffic engineering in hybrid Software Defined Network( SDN),but it is difficult to be directly measured. Existing estimation methods are mainly for the traditional IP networks,not fully applicable to hybrid SDN. In order to solve this problem,this paper proposes an Adaptive multi-Elman Neural Network Algorithm( AMElman) based on Origin-Destination( OD) flowclustering. By clustering OD flows according to the time change pattern,the single high-dimensional training sample can be decomposed into several multiple low-dimensional training samples,and each of the low-dimensional samples ' key characteristics can be strengthened to train the corresponding Elman neural network and construct the multi-Elman model. At the same time,using the feature that part of the hybrid SDN OD flows can be measured accurately and constantly,the estimation algorithm 's parameter can be dynamically adjusted based on change of network status in the estimation process. Experimental results showthat this algorithm has higher estimation accuracy and better adaptability than General Tomogravity( GT) algorithm.
出处 《计算机工程》 CAS CSCD 北大核心 2016年第3期103-110,共8页 Computer Engineering
基金 国家自然科学基金资助项目(61233003 61203256) 国家"863"计划基金资助项目(2014AA06A503)
关键词 软件定义网络 流量矩阵估计 神经网络 聚类 K均值 自适应性 Software Defined Network(SDN) Traffic Matrix(TM) estimation neural network clustering K-means adaptivity
  • 相关文献

参考文献14

  • 1Lin Pingping, Hart J, Krishnaswamy U, et al. Seamless Interworking of SDN and IP[J]. ACM Sigcomm Computer Communication Review,2013,43(4) :475-476.
  • 2Jain S, Kumar A, Mandal S, et al. B4 : Experience with a Globally-deployed Software Defined WAN [ J ]. ACM Sigcomm Computer Communication Review, 2013, 43(4) :3-14.
  • 3Guo Yingya, Wang Zhiliang, Xia Yin, et al. Traffic Engineering in SDN/OSPF Hybrid Network [ C ]// Proceedings of IEEE the 22nd International Conference on Network Protocols. Washington D. C., USA: IEEE Press ,2014:563-568.
  • 4Vardi Y. Network Tomography: Estimating Source- destination Traffic Intensities from Link Data I J ]. Journal of the American Statistical Association, 1996, 91 (433) :365-377.
  • 5Cao Jin, Davis D, Vander W S, et al. Time-varying Network Tomography : Router Link Data [ J ]. Journal of the American Statistical Association, 2000, 95 ( 452 ) .. 1063-1075.
  • 6Zhang Yin,Roughan M, Duffield N, et al. Fast Accurate Computation of Large-scale IP Traffic Matrices from Link Loads I J ]. ACM SIGMETRICS Performance Evaluation Review ,2003,31 ( 1 ) :206-217.
  • 7Nucci A,Cruz R,Taft N,et al. Design of IGP Link WeightChanges for Estimation of Traffic Matrices[CJ//Pro- ceedings of the 23rd Annual Joint Conference of IEEE Computer and Communications Societies. Washington D.C., USA :IEEE Press ,2004:2341-2351.
  • 8Papagiannaki K, Taft N, Lakhina A. A Distributed Approach to Measure IP Traffic Matrices I C 1// Proceedings of the 4th ACM SIGCOMM Conference on Internet Measurement. New York, USA: ACM Press, 2004 : 161-174.
  • 9Lakhina A, Papagiannaki K, Crovella M, et al. Structural Analysis of Network Traffic Flowsl C 1//Proceedings of Joint International Conference on Measurement and Modeling of Computer Systems. New York, USA : ACM Press ,2004:61-72.
  • 10卢学强,梁雪慧,卢学军.神经网络方法及其在非线性时间序列预测中的应用[J].系统工程理论与实践,1997,17(6):97-99. 被引量:56

二级参考文献33

  • 1林春燕,朱东华.基于Elman神经网络的股票价格预测研究[J].计算机应用,2006,26(2):476-477. 被引量:40
  • 2Zhang Y, Rough_art M, Duffield N, Greenberg A. Fast accurate computation of large-scale IP traffic matrices from link loads [J]. ACM SIGMEIRICS Performance Evaluation Review, 2003,31 (3) :206 - 217.
  • 3Zhang Y,Roughan M,Lund C,Donoho D. Estimating point-to- point and point-to-multipoint traffic matrices: An information- theoretic approach [ J ]. IEEE/ACM Trans. on Networking, 2005,13(5) :947 - 960.
  • 4Tan L, Wand X. A novel method to esfunate IP traffic matrix [J]. IEEE Communications Letters, 2007,11 ( 11 ) : 907 - 909.
  • 5Jiang D, Hu G. GARCH model-based large- scale IP traffic matrix estimation[J].IEEE Communications Letters. 2009, 13(1) : 52 - 54.
  • 6Jiang D,Chen J,He L.An accurate approach of large-scale IP traffic rnatrix estimation[ J]. IEICE Transactions on Communications. 2007, E90-B(12) : 3673 - 3676.
  • 7Rahman MM, Saha S, Chengan U, Alfa AS. IP traffic matrix estimation methods: Comparisons and improvements- A]. Proc. the IEEE International Conference on Communications [ C]. 2006.90 - 96.
  • 8Jiang D, Hu G. Large-scale IP traffic matrix estimation based on the recurrent multilayer perceptron network[ A]. Proceedings of the IEEE International Conference on Communications[C]. Beijing, China, 19-23 May 2008. 366- 370.
  • 9Cao J, Davis D, Weil SV, Yu B. Time-varying network tomography:router rink data[ J ]. Journal of American Statistics Association, 2000,95 (452) : 1063 - 1075.
  • 10Juva I. Sensitivity of traffic matrix estimation techniques to their underlying assumptions [A ]. Proceedings of ICC' 07 [ C]. 2007. 562 - 568.

共引文献66

同被引文献18

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部