期刊文献+

周期为2pq的四元序列线性复杂度研究 被引量:1

Research on Linear Complexity of Quaternary Sequences with Period 2pq
下载PDF
导出
摘要 线性复杂度是度量序列随机性的一个重要指标。基于广义分圆理论,在有限域F4上构造一类周期为2pq的四元平衡广义分圆序列。利用有限域上多项式根理论,通过分析序列的生成多项式与x2pq-1在F4代数闭包中公共根的个数,确定其线性复杂度的精确值。分析结果表明,新序列有较高的线性复杂度和较好的密码学性质。 Linear complexity is an important index for measuring the randomness properties of the sequences. Based on the theory of generalized cyclotomic,a newclass of quaternary balanced generalized cyclotomic sequences with period2 pq over finite field F4 is constructed. Using the theory of polynomial roots over finite field,linear complexity is determined by examining the common root of generating polynomial of the sequences and polynomial x2pq- 1 over the algebra closure of F4. The results showthat the newsequence has high linear complexity. It is a good sequence from the viewpoint of cryptography.
出处 《计算机工程》 CAS CSCD 北大核心 2016年第3期161-164,共4页 Computer Engineering
基金 国家自然科学基金资助项目(61202395 61462077 61562077) 教育部"新世纪优秀人才计划"基金资助项目(NCET-12-0620)
关键词 流密码 伪随机序列 广义分圆 四元序列 线性复杂度 B-M算法 stream cipher pseudo-random sequence generalized cyclotomic quaternary sequences linear complexity B-M algorithm
  • 相关文献

参考文献18

  • 1Golomb S W, Guang Gong. Signal Design for Good Correlation for Wireless Communication ~ M~. Cambridge, UK:Cambridge University Press ,2005.
  • 2石永芳,杜小妮,闫统江,李旭.周期为p^m的广义割圆序列线性复杂度研究[J].计算机工程,2013,39(7):189-192. 被引量:1
  • 3杜小妮,肖国镇.周期为p≡7(mod8)的一类新六次剩余序列的迹表示[J].计算机工程,2007,33(7):21-22. 被引量:3
  • 4Ding Cunsheng, Hellseth T. On the Linear Complexity of Legendre SequencesI J]. IEEE Transactions on Informa- tion Theory, 1998,44 ( 1 ) : 1276-1278.
  • 5Ding Cunsheng, Hellseth T. Generalized Cyclotomic Codes of Length p~p~2 ...p~,~ Jl. IEEE Transactions on Information Theory, 1999,45 ( 2 ) :467-474.
  • 6Yan Tongjiang, Sun Rong, Xiao Guozhen. Auto- correlation and Linear Complexity of the New Generalized Cyclotomic Sequences I J 3 ~ IEICE Transac- tions on Fundamentals,2007,90 (4) : 857-864.
  • 7Kim Young-joon,Jin Seok-yong. Linear Complexity and Autocorrelation of Prime Cube Sequences C J I. Applied Algebra and Error Correcting Codes, 2007, 18(1) : 188-197.
  • 8Du Xiaoni, Chen Zbixiong. Linear Complexity of Quaternary Sequence Generated Using Generalized Cyclotomic Classes Modulo 2p I J ]. IEICE Transactions on Fundamentals ,2011,94 ( 5 ) : 1214-1217.
  • 9Ke Pinhui. New Classes of Quaternary Cyclotomic Sequence of Length 2pmwith High Linear Complexity[ J 3- Information Processing Letters ,2012,112 ( 16 ) :646-650.
  • 10Chang Zuling,Li Dandan. On the Linear Complexity of Quaternary Cyclotomic Sequences with the Period 2pqI J]. IEICE Transactions on Fundamentals, 2014, 97 ( 2 ) :679-684.

二级参考文献20

  • 1Key E L.An Analysis of the Structure and Complexity of Nonlinear Binary Sequence Generators[J].IEEE Trans.on Inform.Theory,1976,22(6):732-736.
  • 2Jensen J M,Jensen H E,Hodoldt T.The Merit Factor of Binary Sequences Related to Difference Sets[J].IEEE Trans.on Inform.Theory,1991,37(3):617-626.
  • 3Jr M H.A Survey of Difference Sets[C]//Proc.of Amer.Math.Soc..1956,7:975-986.
  • 4Kim J H,Song H Y.On the Linear Complexity of Hall's Sextic Residue Sequences[J].IEEE Trans.on Inform.Theory,2001,47(5):2094-2096.
  • 5Kim J H,Song H Y,Gong G.Trace Function Representatio of Hall's Sextic Residue Sequences of Period[DB/OL].2002.http://www.cacr.math.uwaterloo.ca/.
  • 6Lidl R,Neiderreiter H.Finite Fields[M].MA:Addison-Wesley,1983.
  • 7Storer T.Cyclotomy and Difference Sets[M].Chicago:Markham,1967.
  • 8Golomb S W. Shift Register Sequences[M]. San Francisco, USA: Aegean Park Press Laguna Hills, 1981.
  • 9Lidl R, Niederreiter H. Finite Fields(Encyclopedia of Mathematics and Its Applications)[M]. [S. l.]: Addison- Wesley, 1983.
  • 10Ding C, Helleseth T. New Generalized Cyclotomy and Its Application[J]. Finite Fields Applications, 1998, 4(2): 140- 166.

共引文献2

同被引文献2

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部