期刊文献+

基于稀疏表示的遥感图像分类方法改进 被引量:7

Improvement of Remote Sensing Image Classification Method Based on Sparse Representation
下载PDF
导出
摘要 传统稀疏表示分类算法由于没有给出全面的图像纹理信息,导致分类准确率不高。针对该问题,在稀疏表示分类模型中引入局部二值模式(LBP)特征,提出一种新的稀疏表示分类方法。该方法使用LBP对遥感图像进行特征提取,获得遥感图像的局部纹理特征,根据LBP直方图训练结构化字典,建立基于稀疏表示的遥感图像分类模型。实验结果表明,与支持向量机以及K最近邻方法相比,该方法能够有效提高分类精度。 Owing to the traditional Sparse Representation-based Classification( SRC) algorithm can not extract image texture information comprehensively,the result of classification is not high. In order to solve this problem,the Local Binary Pattern( LBP) feature is added to the SRC model,and a novel sparse representation classification method is proposed. The LBP is used to extract the local texture of the remote sensing image and the LBP histogram is used to design a structured dictionary,which is more suitable for the remote sensing image. Compared with the Support Vector Machine( SVM) and K-nearest Neighbor( KNN) method,experimental results showthat the proposed method can improve the classification accuracy.
出处 《计算机工程》 CAS CSCD 北大核心 2016年第3期254-258,265,共6页 Computer Engineering
关键词 稀疏表示 局部二值模式 遥感图像 局部纹理 字典学习 sparse representation Local Binary Pattern(LBP) remote sensing image local texture dictionary learning
  • 相关文献

参考文献17

  • 1Chen Y, Nasrabandinm T D. Hyperspectral Image Classification via Kernel Sparse Representation I J 1. 1EEE Transactions on Geoscience and Remote Sensing, 2013,5[ ( I ) :217-231.
  • 2Turner M R. Texture Discrimination by Gabor Functionsl J 1 - Biological Cybernetics, 1986,55 ( 2/3 ) : 71-82.
  • 3Mirzapour F, Ghassemian H. Using GLCM and Gabor Filters for Classification of PAN Images [ C ]// Proceedings of ICEE' 13. Washington D. C. ,USA:IEEE Press, 2013 : 1-6.
  • 4Yi Jun,Su Fei. Histogram of Log-gabor Magnitude Patterns for Face Recognition I C l//Proceedings of IEEE Inter- national Conference on Acoustics, Speech and Signal Pro- cessing. Washington D.C. ,USA:IEEE Press,2014:519-5Z3.
  • 5Gui Feng,Wei Linqi. Application of Variogram Function in Image Analysis [ C ]//Proceedings of the 7th International Conference on Signal Processing. Washington D. C. ~ USA : IEEE Press, 2004 : 1099-1102.
  • 6Ojala T, Pietikainen M, Maenpaa T. Multiresolution Gray-scale and Rotation Invariant Texture Classification with Local Binary Patterns [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24( 7 ) : 971-987.
  • 7宋本钦,李培军.加入改进LBP纹理的高分辨率遥感图像分类[J].国土资源遥感,2010,22(4):40-45. 被引量:12
  • 8Ahonen T, Hadid A, Pietikainen M. Face Description with Local Binary Patterns: Application to Face RecognitionE J l. IEEE Transactions on Pattern Analysis and Machine Intelligence ,2006,28 ( 12 ) :2037-2041.
  • 9Zhang Wenchao, Shah Shiguang, Gao Wen, et al. Local Gabor Binary Pattern Histogram Sequence ( LGBPHS ) : A Novel Non-statistical Model for Face Representation and Recognition I C l//Proceedings of the 10th IEEE International Conference on Computer Vision. Washington D. C. , USA : IEEE Computer Society, 2005 : 786-791.
  • 10Wang Xiaoyu, Han T X, Yan Shuicheng. An HOG-LBP Human Detector with Partial Occlusion Handling I C 1// Proceedings of the 12th IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Computer Society ,2009:32-39.

二级参考文献29

  • 1李全,王海燕,李霖.基于最大似然分类算法的土地覆盖分类精度控制研究[J].国土资源科技管理,2005,22(4):42-45. 被引量:13
  • 2Zhang L, Huang X,Huang B,et al. A Pixel Shape Index Coupled with Spectral Information for Classification of High Spatial Resolution Remotely Sensed Imagery[ J]. IEEE Transactions on Geoscience and Remote Sensing,2006,44 ( 10 ) :2950 - 2961.
  • 3Li P J,Cheng T,Guo J C. Multivariate Image Texture by Multivariate Variogram for Muhispectral Image Classification [ J ]. Photogrammetric Engineering and Remote Sensing,2009,75 ( 2 ) : 147 - 157.
  • 4Marceau D J, Howarth P J, Dubois J M, et al. Evaluation of the Grey- Level Co - ocurrence Matrix Method for Land - Cover Classification Using SPOT Imagery [ J ]. IEEE Transactions on Geoscience and Remote Sensing,1990,28(4) :513 -519.
  • 5Gong P,Marceau D J,Howarth P J. A Comparison of Spatial Feature Extraction Algorithms for Land - Use Classification with SPOT HRV Data [ J]. Remote Sensing of Environment, 1991,40 : 137 - 151.
  • 6Haralick R M,Shanmugam K,Dinstein I. Texture Feature for Image Classification [ J ]. IEEE Transactions on Systems, Man and Cybermetics, 1973,3:610 - 625.
  • 7Ojala T, Pietikainen M, Maenpaa T. Muhimsolutin Gray Scale and Rotation Invariant Texture Analysis with Local Binary Pattern [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002,24 (7) :971 - 987.
  • 8Kyllonen J, Pietikainen M. Visual Inspection of Parquet Slabs by Combining Color and Texture[ G]//Proc IAPR Workshop on Machine Vision Applications (MVA00). Tokyo :2000 : 187 - 192.
  • 9Feng X, Pietikainen M, Hadid A. Facial Expression Recognition with Local Binary Patterns and Linear Programming [ J ]. Pattern Recognition and Image Analysis,2005,15 ( 2 ) :550 - 552.
  • 10Zhou H, Wang R S, Wang C. A Novel Extended Local - Binary - Pattern Operator for Texture Analysis [ J ]. Information Sciences, 2008,178:4314 - 4325.

共引文献26

同被引文献34

引证文献7

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部