摘要
传统稀疏表示分类算法由于没有给出全面的图像纹理信息,导致分类准确率不高。针对该问题,在稀疏表示分类模型中引入局部二值模式(LBP)特征,提出一种新的稀疏表示分类方法。该方法使用LBP对遥感图像进行特征提取,获得遥感图像的局部纹理特征,根据LBP直方图训练结构化字典,建立基于稀疏表示的遥感图像分类模型。实验结果表明,与支持向量机以及K最近邻方法相比,该方法能够有效提高分类精度。
Owing to the traditional Sparse Representation-based Classification( SRC) algorithm can not extract image texture information comprehensively,the result of classification is not high. In order to solve this problem,the Local Binary Pattern( LBP) feature is added to the SRC model,and a novel sparse representation classification method is proposed. The LBP is used to extract the local texture of the remote sensing image and the LBP histogram is used to design a structured dictionary,which is more suitable for the remote sensing image. Compared with the Support Vector Machine( SVM) and K-nearest Neighbor( KNN) method,experimental results showthat the proposed method can improve the classification accuracy.
出处
《计算机工程》
CAS
CSCD
北大核心
2016年第3期254-258,265,共6页
Computer Engineering
关键词
稀疏表示
局部二值模式
遥感图像
局部纹理
字典学习
sparse representation
Local Binary Pattern(LBP)
remote sensing image
local texture
dictionary learning