摘要
In differential evolution (DE), the salient feature lies in its mutation mechanism that distinguishes it from other evolutionary algorithms. Generally, for most of the DE algorithms, the parents for mutation are randomly chosen from the current population. Hence, all vectors of population have the equal chance to be selected as parents without selective pressure at all. In this way, the information of population cannot be fully exploited to guide the search. To alleviate this drawback and improve the performance of DE, we present a new selection method of parents that attempts to choose individuals for mutation by utilizing the population information effectively. The proposed method is referred as fitnessand-position based selection (FPS), which combines the fitness and position information of population simultaneously for selecting parents in mutation of DE. In order to evaluate the effectiveness of FPS, FPS is applied to the original DE algorithms, as well as several DE variants, for numerical optimization. Experimental results on a suite of benchmark functions indicate that FPS is able to enhance the performance of most DE algorithms studied. Compared with other selection methods, FPS is also shown to be more effective to utilize information of population for guiding the search of DE.
In differential evolution (DE), the salient feature lies in its mutation mechanism that distinguishes it from other evolutionary algorithms. Generally, for most of the DE algorithms, the parents for mutation are randomly chosen from the current population. Hence, all vectors of population have the equal chance to be selected as parents without selective pressure at all. In this way, the information of population cannot be fully exploited to guide the search. To alleviate this drawback and improve the performance of DE, we present a new selection method of parents that attempts to choose individuals for mutation by utilizing the population information effectively. The proposed method is referred as fitnessand-position based selection (FPS), which combines the fitness and position information of population simultaneously for selecting parents in mutation of DE. In order to evaluate the effectiveness of FPS, FPS is applied to the original DE algorithms, as well as several DE variants, for numerical optimization. Experimental results on a suite of benchmark functions indicate that FPS is able to enhance the performance of most DE algorithms studied. Compared with other selection methods, FPS is also shown to be more effective to utilize information of population for guiding the search of DE.