期刊文献+

Nonlinear infrared plasmonic waveguide arrays 被引量:1

Nonlinear infrared plasmonic waveguide arrays
原文传递
导出
摘要 The large negative permittivity of noble metals in the infrared region prevents the possibility of highly confined plasmons in simple waveguide structures such as thin films or rods. This is a critical obstacle to applications of nonlinear plasmonics in the telecommunication wavelength region. We theoretically propose and numerically demonstrate that such limitation can be overcome by exploiting inter-element coupling effects in a plasmonic waveguide array. The supermodes of a plasmonic array span a large range of effective indices, making these structures ideal for broadband mode-multiplexed interconnects for integrated photonic devices. We show such plasmonic waveguide arrays can significantly enhance nonlinear optical interactions when operating in a high-index, tightly bound supermode. For example, a third-order nonlinear coeffident in such a waveguide can be more than three orders of magnitude larger compared to silicon waveguides of similar dimensions. These findings open new design possibilities towards the application of plasmonics in integrated optical devices in the telecommunications spectral region. The large negative permittivity of noble metals in the infrared region prevents the possibility of highly confined plasmons in simple waveguide structures such as thin films or rods. This is a critical obstacle to applications of nonlinear plasmonics in the telecommunication wavelength region. We theoretically propose and numerically demonstrate that such limitation can be overcome by exploiting inter-element coupling effects in a plasmonic waveguide array. The supermodes of a plasmonic array span a large range of effective indices, making these structures ideal for broadband mode-multiplexed interconnects for integrated photonic devices. We show such plasmonic waveguide arrays can significantly enhance nonlinear optical interactions when operating in a high-index, tightly bound supermode. For example, a third-order nonlinear coeffident in such a waveguide can be more than three orders of magnitude larger compared to silicon waveguides of similar dimensions. These findings open new design possibilities towards the application of plasmonics in integrated optical devices in the telecommunications spectral region.
出处 《Nano Research》 SCIE EI CAS CSCD 2016年第1期224-229,共6页 纳米研究(英文版)
关键词 infrared plasmonics plasmonic waveguides nonlinear plasmonics waveguide theory waveguide arrays infrared plasmonics,plasmonic waveguides,nonlinear plasmonics,waveguide theory,waveguide arrays
  • 相关文献

参考文献24

  • 1Oulton, R. F.; Sorger, V. J.; Genov, D. A.; Pile, D. F. P.; Zhang, X. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat. Photonics 2008,2,496-500.
  • 2Sorger, V. J.; Ye, Z. L.; Oulton, R. F.; Wang, Y.; Bartal, G.; Yin, X. B.; Zhang, X. Experimental demonstration oflow-Ioss optical wave guiding at deep sub-wavelength scales. Nat. Commun. 2011,2,331.
  • 3Mrejen, M.; Suchowski, H.; Hatakeyama, T.; Wu, C.; Feng, L.; O'Brien, K.; Wang, Y.; Zhang, X. Adiabatic e1imination?based coupling control in densely packed subwavelength waveguides. Nat. Commun. 2015, 6, 7565.
  • 4Johnson, P. B.; Christy, R.-W. Optical constants of the noble metals. Phys. Rev. B 1972, 6,4370-4379.
  • 5West, P. R.; Ishii, S.; Naik, G. V.; Emani, N. K.; Shalaev, V. M.; Boltasseva, A. Searching for better plasmonic materials. Laser Photon. Rev. 2010, 4, 795-808.
  • 6Naik, G. V.; Kim, J.; Boltasseva, A. Oxides and nitrides as alternative plasmonic materials in the optical range(Invited). Opt. Mater. Express 2011,1,1090-1099.
  • 7Emani, N. K.; Chung, T.-F.; Ni, X. J.; Kildishev, A. V.; Chen, Y. P.; Boltasseva, A. Electrically tunable damping of plasmonic resonances with graphene. Nano Lett. 2012, 12, 5202-5206.
  • 8Naik, G. V.; Shalaev, V. M.; Boltasseva, A. Alternative plasmonic materials: Beyond gold and silver. Adv. Mater. 2013,25,3264-3294.
  • 9Pendry, J. B.; Martin-Moreno, L.; Garcia-Vidal, F. J. Mimicking surface plasmons with structured surfaces. Science 2004,305,847-848.
  • 10Hibbins, A. P.; Evans, B. R.; Sambles, J. R. Experimental verification of designer surface plasmons. Science 2005, 308, 670-672.

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部