期刊文献+

Ultra-stable silica-coated chiral Au-nanorod assemblies: Core-shell nanostructures with enhanced chiroptical properties 被引量:3

Ultra-stable silica-coated chiral Au-nanorod assemblies: Core-shell nanostructures with enhanced chiroptical properties
原文传递
导出
摘要 Chiral nano-assemblies with amplified optical activity have attracted particular interest for their potential application in photonics, sensing and catalysis. Yet it still remains a great challenge to realize their real applications because of the instability of these assembled nanostructures. Herein, we demonstrate a facile and efficient method to fabricate ultra-stable chiral nanostructures with strong chiroptical properties. In these novel chiral nanostructures, side-by-side assembly of chiral cysteine-modified gold nanorods serves as the core while mesoporous silica acts as the shell. The chiral core-shell nanostructures exhibit an evident plasmonic circular dichroism (CD) response originating from the chiral core. Impressively, such plasmonic CD signals can be easily manipulated by changing the number as well as the aspect ratio of Au nanorods in the assemblies located at the core. In addition, because of the stabilization effect of silica shells, the chiroptical performance of these core-shell nanostructures is significantly improved in different chemical environments. Chiral nano-assemblies with amplified optical activity have attracted particular interest for their potential application in photonics, sensing and catalysis. Yet it still remains a great challenge to realize their real applications because of the instability of these assembled nanostructures. Herein, we demonstrate a facile and efficient method to fabricate ultra-stable chiral nanostructures with strong chiroptical properties. In these novel chiral nanostructures, side-by-side assembly of chiral cysteine-modified gold nanorods serves as the core while mesoporous silica acts as the shell. The chiral core-shell nanostructures exhibit an evident plasmonic circular dichroism (CD) response originating from the chiral core. Impressively, such plasmonic CD signals can be easily manipulated by changing the number as well as the aspect ratio of Au nanorods in the assemblies located at the core. In addition, because of the stabilization effect of silica shells, the chiroptical performance of these core-shell nanostructures is significantly improved in different chemical environments.
出处 《Nano Research》 SCIE EI CAS CSCD 2016年第2期451-457,共7页 纳米研究(英文版)
基金 This work was supported by the National Basic Research Program of China (No. 2014CB931801, Z. Y. T.), the National Natural Science Foundation of China (No. 21475029, Z. Y. T.), the Instrument Developing Project of the Chinese Academy of Sciences (No. YZ201311) and the CAS-CSIRO Cooperative Research Program (No. GJHZ1503).
关键词 chiral core-shell nanostructure plasmonic circular dichroism gold nanorods SELF-ASSEMBLY high stability chiral core-shell nanostructure,plasmonic circular dichroism,gold nanorods,self-assembly,high stability
  • 相关文献

参考文献2

二级参考文献34

  • 1Valev, V. K,; Baumberg, J. J.; Sibilia, C.; Verbiest, T. Chirality and chiroptical effects in plasmonic nanostructures: Fundamentals, recent progress, and outlook. Adv. Mater. 2013, 25, 2517-2534.
  • 2Guerrero-Martinez, A.; Alonso-G6mez, J. L.; Augui6, B.; Cid, M. M.; Liz-Mfirzan, L. M. From individual to collective chirality in metal nanoparticles. Nano Today 2011, 6, 381-400.
  • 3Ben-Moshe, A.; Maoz, B. M.; Govorov, A. O.; Markovich,G. Chirality and chiroptical effects in inorganic nanocrystal systems with plasmon and exciton resonances. Chem. Soc. Rev. 2013, 42, 7028-7041.
  • 4Hendry, E.; Carpy, T.; Johnston, J.; Popland, M.; Mikhaylovskiy, R. V.; Lapthom, A. J.; Kelly, S. M.; Barton, L. D.; Gadegaard, N.; Kadodwala, M. Ultrasensitive detection and characterization of biomolecules using superchiral fields. Nat. Nanotechnol. 2010, 5, 783-787.
  • 5Wu, X. L.; Xu, L. G.; Liu, L. Q.; Ma, W.; Yin, H. H.; Kuang, H.; Wang, L. B.; Xu, C. L.; Kotov, N. A. Unexpected chirality of nanoparticle dimers and ultrasensitive chiroplasmonic bioanalysis. J. Am. Chem. Soc. 2013, 135, 18629 18636.
  • 6Ma, W.; Kuang, H.; Xu, L. G.; Ding, L.; Xu, C. L.; Wang, L. B.; Kotov, N. A. Attomolar DNA detection with chiral nanorod assemblies. Nat. Commun. 2013, 4, 2689.
  • 7Pendry, J. B. A chiral route to negative refraction. Science 2004, 306, 1353-1355.
  • 8Gansel, J. K.; Thiel, M.; Rill, M. S.; Decker, M.; Bade, K.; Saile, V.; yon Freymann, G.; Linden, S.; Wegener, M, Gold helix photonic metamaterial as broadband circular polarizer. Science 2009, 325, 1513-1515.
  • 9Hentschel, M.; Sch~iferling, M.; Weiss, T.; Liu, N.; Giessen, H. Three-dimensional chiral plasmonic oligomers. Nano Lett. 2012, 12, 2542-2547.
  • 10Lu, F.; Tian, Y.; Liu, M. Z.; Su, D.; Zhang, H.; Gorovov, A. Gang, O. Discrete nanocubes as plasmonic reporters of molecular chirality. Nano Lett. 2013, 13, 3145-3151.

共引文献31

同被引文献3

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部